
AUTOMATIC CONSTRUCTION

OF XML-BASED TOOLS

SEEN AS META-PROGRAMMING

Baltasar Trancón y Widemann
Markus Lepper
Jacob Wieland
bt, lepper, ugh@cs.tu-berlin.de

Technische Universität Berlin

Abstract

This article presents XML-based tools for parser generation and data binding gen-
eration. The underlying concept is that of transformation between formal languages,
which is a form of meta-programming. We discuss the benefits of such a declara-
tive approach with well-defined semantics: productivity, maintainability, verifiability,
performance and safety.

Keywords: XML, SAX, DOM, TDOM, ANTLR, XANTLR, compiler construc-
tion, meta-programming, parser generation, data binding generation

1. Introduction

1.1 A Possible Land-map of XML Applications

The simple fact that the bandwidth of communication channels and
processors has increased rapidly during the last decade allows the revi-
talization of an old concept known from ancient UNIX days: the use of
a simple thing like text as central medium for information interchange.

This is reflected by the common agreement upon the necessity of stan-
dardization, and the resulting acceptance and vivid participation in the
XML standardization processes.

At first glance, these XML-related standards seem quite poor: The
basic layer of the specifications ([5]) just regulates the encoding of arbi-
trarily formed trees.

The next layer should give a notion of “type”. Here we find a di-
versity of different concepts: the ancient DTD, which is not expressive
enough, the recently codified W3C-Schema, and more than half a dozen

1

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

very interesting competitor schema languages, — each of them contain-
ing brilliant ideas and different nice features everyone would like to use
(cf. the survey given in [10], even newer is [2], based on theoretical
considerations in [13]).

But it is just because of the most simple notion of “text” the XML
kernel imposes on its objects, just because of the absence of almost all
typing restrictions and semantic implications, that XML based nota-
tions and tools potentially can (and probably will) infiltrate all areas of
software engineering.

So the notions “XML-based encoding” and “XML-based architecture”
will more and more get a significance like “ASCII-based”. Indeed the
area of “XML-applications” does contain objects from totally divergent
disciplines of software engineering, — each with very different underlying
mathematical models, different traditions and ways of speaking, different
grades of abstractions, etc. This total area could be described by a map
with three landmarks in triangular position:

One vertex of the triangle is made up by instances of XML used
as a merely technically determined coding format for e.g.

– tool configuration data, as in [16],
– network protocol data units in client/server architectures, as

in SOAP [17], XLANG [12] etc.1.
– database interfaces, representing both data and queries2.
– definition of meta-models, e.g. business items, e-commerce

transaction objects,

Most remote from that first vertex is the second one, defined by the
needs of authoring, especially of “compound document”. This is a
very complex and inherently generic concept: (1) the integration
of most heterogenous materials (sound, business objects, graphics
etc.) into a well-defined context must be supported, (2) for sake of
re-usability and convenience mechanisms for parameterization of
types as well as of documents seems highly desirable, and (3) such
divergent applications as technical documentations (e.g. using the
DOCBOOK DTD), scientific articles (in LATEX manner), cool web
pages, table-oriented data base views for web information services
(HTML-like or ECMA-script backend) must be representable.

1Having a look at the thousands of pages produced by international standardization boards
just talking about coding, one feels the relief that hundreds of hours of valuable human labor
will be saved, since now we can argue about content, and put at the end of each project’s
agenda “. . . and further shall there be a standard XML encoding.”.
2There are numerous approaches, in industrial practice as well as in academic research, e.g.
[9] and [1], — the latter providing further references.

2

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

This is the original field of SGML, and is covered in the authors’
toolkit by DDD(see fig. 1, [11]).
Somehow related to both other areas, but requiring special treat-
ment w.r.t. the correctness of transformations, is the usage of
XML tree structures for the representation of “terms” of a given

formal language. Some self-applications, like schema languages,
use these kinds of semantics. Also the more elaborated species of
the “coding formats” mentioned above are defined using simple
grammars, and re-appear in this group.
A promising approach on the level of system architecture for sake
of inter-operability is the representation of “abstract syntax trees”
(“ASTs”, which are used as output format of most parser codes)
by XML structures.

1.2 Automatic Parser Generation by XANTLR

and TDOM

While the authors have worked in all these three areas (cf. figure 1),
the following presentation will concentrate on their work on this very last
topic, the automated generation of an XML-based AST representation
and its further processing by semantic transformations. The main focus
is on two tools: XANTLR transforms annotated grammars to DTD and
parser code (see section 2), and TDOM constructs a typed document
model for further processing (see section 3).

While being usable independently, XANTLR and TDOM are designed
to work in a pipeline. Indeed this combination has already been suc-
cessfully used in one medium scale industrial project3: Our “TTthree”
TTCN-3 compiler. The production process and the involved person-
nel is depicted in figure 2, the dashed lines containing the automated
processing. For the front-end of our TTCN-3 compiler only a single
XANTLR-grammar of about 2,400 lines is given.

XANTLR is an extension to the well-known ANTLR parser generator.
ANTLR very comfortably and reliably generates LL(k) parsers with user
definable semantic actions and explicit backtracking.

XANTLR can be thought of as a “ANTLR with a preprocessor”. It
reads a grammar file, where nonterminals are enriched with special an-
notations. These annotations control the automatic definition and gen-
eration of an XML-based representation of the resulting parse tree: (1)
Semantic actions emitting SAX events are automatically inserted into

3While all tools in figure 1 have at least succeeded with test applications.

3

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

the grammar definition, and (2) a DTD is derived which exactly de-
scribes the abstract syntax.

The compilation of the generated JAVA sources yields a parser which
analyzes a text in the language under implementation and delivers the
recognized AST by emitting the corresponding SAX events.

On the other hand, TDOM is realized as a DTD-to-JAVA compiler.
Each ELEMENT definition from the DTD is translated to a JAVA class

definition. Each of these classes provides: parser methods, which con-
sume XML (SAX or W3C-DOM, respectively) and create a correspond-
ing typed document object model, validated against the element’s content
model, and a set of validity preserving modification methods.

The resulting code is connected to the parser code via a SAX interface,
preserving the original locator information. The resulting AST object
is further processed by “hand-written” visitor style code, which inherits
from the visitor prototypes also automatically generated by TDOM.

XANTLR TDOM

DDD

.ddd

.ddd

Compress

.XML .cx

tci000.Z

TSOAP

.xg

.<language>

.java

.jar
.java
.jar

.<handcoded Xformation>

.DTD

Figure 1: Current Status of the Authors’ XML Related Toolkit

4

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

TDOM

javac javac

javadoc

javac

.DTD

.java

.jar jar

<module> .ttcn3

.html

SAX & locator info

reducer.jar

ttcn3.xg
reducer.java

XANTLR

ANTLR

parse_ttcn3.java

Figure 2: The parser and object model generation process

1.3 Trees and Transformations

1.3.1 Typed Trees vs. Homogenous Trees. As soon as
talking about XML and AST, one comes across two (de-facto-) standard
object models: W3C-DOM and the ANTLR default trees, respectively.
Both are homogenous tree models, i.e. the tag classes of the elements
are not mapped onto (/not known to) the type system of the hosting
language.

But obviously there are many arguments for mapping the “grammar”
of the documents as closely as possible onto the hosting type system:

Expressiveness: Powerful mechanisms of the hosting language (in-
heritance, genericity, built-in container classes) may be only acces-
sible via the type system.
More programming errors may be detected statically at compile
time.

5

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

Better code performance: compile time type information is ex-
ploited by any intelligent compiler for severe optimizations.
Built-in documentation mechanisms related to the type system can
be used.
Maintainability is improved by type checking of hosting language.

For these reasons, our TDOM realizes a typed document object model,
in contrast to W3C-DOM and genuine ANTLR trees.

1.3.2 Text Transformation seen as Meta-Programming.

At first glance, the fact that XANTLR as well as TDOM produce source

text for a target language, could be considered to be just an implemen-
tation “hack”, — in our case: to compensate the lack of genericity in
JAVA.

The picture changes immediately, as soon as the transformations can
be completely described as morphisms between two term algebras with

exactly definable semantics. Suddenly well-known results from “aca-
demic” research and corresponding standard techniques are applicable,
from most diverse fields like grammar morphisms, graph transforma-
tions, language translation, logic, context analysis, etc.

On the output side this condition is doubtlessly met when transform-
ing into a “denotational” format, like XANTLR transforming grammar
rules into DTD content models. It may even be met when generat-
ing code of an “imperative” language, since code generation can (and
should!) of course always be planned in such way that its output obeys
strict limitations, e.g. behaves strictly functionally, or has only local
side effects etc.

On the input side of the transformations there is justified hope that
more and more standard interface definitions will migrate to an XML-
based encoding. The corresponding DTD- or schema-based declarations
always induce a “canonical term algebra”, which may be suitable as a
basis for specifying the semantic transformations. To be really seen as
an instance of “meta-programming”, such a mathematical specification
seems indispensable.

The automatic generation of source code is well known from IDL-
compilers, — a topic which can easily be treated exactly, since no dy-
namic behavior is involved. But in the future more and more CASE-
tools will be controllable by XML-based interface languages. A much
more challenging task will be the automated generation of gluing soft-
ware between these kinds of tools, because the dynamic semantics of the
meta-models involved have to be translated correctly.

6

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

1.3.3 Type-safe Transformations. The transformation en-
coding in our practical application projects are (still) encoded “by hand”
and use an “imperative” language, — but not an imperative style of
programming: algorithms are encoded by pattern matching, realized
through visitor classes derived from the automatically generated proto-
types. In a majority of cases a “pure functional style” of coding evolves
quite naturally.

Please note, that — dialectically — XSLT, while being specially de-
signed for “declarative” definitions of transformations, has full Turing-
power, with all known consequences. Potentially TDOM-based visitors
have nearly the same degree in polymorphism as XSLT, e.g. changes in
the definition of the document’s structure do not necessarily affect the
existing visitor code.

2. Parser Generation and XML

Since parsing techniques were developed in a time when memory was
expensive and each allocated data chunk had to be justified, classical
parsers (and thus the output of classical parser generators) are designed
for single-pass translation. In such a parser, the state transitions as-
sociated with the matching of terminal symbols or the construction of
nonterminals are labeled with side effects (sometimes called semantic
actions). The output of the parser consists of the trace of side effects
produced by the consumption of a whole input unit.

Action parsers are very efficient for simple input languages that can
be handled in such a linear way. However, they have severe deficiencies:
First, they cannot handle forward references gracefully, resulting in a
definition before use rule, which is often undesirable in abstract descrip-
tive languages. Second, and more important, the structure of the parser
output is given only implicitly by the set of possible action traces. Since
semantic actions may invoke arbitrary code, there is no general way of
specifying the results of parsing.

The first issue is remedied by means of abstract syntax trees (ASTs),
i.e., data structures that capture the relevant content of input documents
and abstract from redundancies and peculiarities of the input language,
such as keywords and layout constraints. Information that could not be
obtained in the first parsing pass can then be collected by iterated (and
hopefully efficient) traversal over the AST data. However, as long as
ASTs are created imperatively by semantic actions, the second problem
remains unsolved.

If a parser is seen as the implementation of a formal transformation,
the output language must be as well-defined as the input language. I.e.,

7

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

the definition given to the parser generator must not only specify an in-
put grammar decorated with stray semantic actions, but rather a gram-

mar morphism giving exact mappings of rules of the input grammar
to rules of the output grammar. Then, transformations can be safely
composed by applying a second parser to the results of the first one,
since the critical transition from the domain of formal languages to the
domain of side effects is deferred.

Once such a transformational parser exists, it can be shared by dif-
ferent applications that process the given input language. For example,
a compiler and a formatter might generate code and documentation for
a literate programming language out of the same intermediate represen-
tation; or a browser, a database and a XSLT processor might use the
same XML to SAX parser.

The structured constituents of XML, i.e., elements and attributes,
allow for a standardized universal representation of ASTs. But some
thought has to be given to efficiency: Textual XML, though simple
to process, is extremely redundant, so parse trees may grow by sev-
eral orders of magnitude compared to the corresponding input (see Ap-
pendix A). Whether a data (DOM) based or an event (SAX) based
interface is preferable, depends on the application. The advantage of
event-driven implementations in terms of memory efficiency may be com-
pensated by the need to split complex transformations into several linear
passes, whereas a data structure in memory provides random access.

2.1 The XANTLR Algorithm

Parsers generated by the powerful ANTLR[14] LL(k) parser generator
produce generic homogeneous ASTs that support serialization to plain
XML text. The output can then be processed by a standard XML parser,
such as the Xerces[3] Parser to generate SAX events or to construct a
DOM tree.

We have developed XANTLR, an XML-aware extension to ANTLR.
XANTLR generated parsers directly emit SAX events, which can be con-
figured for each nonterminal individually, using an extension of the gen-
uine ANTLR option mechanism. Since the output format is not deter-
mined by hand-coded semantic actions, but by rule-by-rule annotations
controlling the grammar mapping, XANTLR is a genuinely declarative
transformation formalism as postulated in 1.3.1.

Any SAX event handler can be connected to the XANTLR-generated
parser, thus having access to the XML structure of the parsed input
without constructing intermediate data structures. A locator imple-
mentation is provided, so the point of origin of each syntax element can

8

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

be tracked down to the input. A persistent XML document can still
be obtained (without going through ANTLR-AST construction and se-
rialization) by attaching a SAX serializer. Thus, every language that
is feasibly LL(k)-parsable can be assigned a canonical XML representa-
tion and automatically translated into XML documents.4 For nontrivial
post-processing of the AST data, XANTLR can be combined with our
typed DOM generator TDOM (cf. section 3).

The XANTLR preprocessing algorithm is specified by the following
transformation rules. Parts of the grammar definition (XANTLR’s input)
that are matched literally are printed in black, meta-variables are grey,
with Latin and Greek letters denoting single nonterminals and regular
expressions, respectively. When all possible transformations are applied,
the result is a plain ANTLR grammar with semantic actions (written in
curly braces) that fire appropriate SAX events:

The default is to represent each nonterminal as an element of the
same name:

a: α ;

a: {startElement("a");} α {endElement("a");} ;

A different name can be given:

a options{xmlNodeName=b;}: α ;

a: {startElement("b");} α {endElement("b");} ;

A nonterminal can be marked as a lexical category, containing lit-
eral data:

a options{xmlNodeType=pcdata;}: α ;

a: α {characters(α.getText());} ;

A nonterminal may become an anonymous content building block:

a options{xmlNodeType=entity;}: α ;

a: α ;

In parallel to parser generation, a DTD is produced, specifying the
grammar of the parser’s output for XML consumers. Since input and
output languages are homomorphic, the DTD derivation algorithm can
be defined inductively by the following rules:

Per default, rules are mapped to elements (with optional renam-
ing):

a: α ;

<!ELEMENT a α′>

a options{xmlNodeName=b;}: α ;

<!ELEMENT b α′>

4We expect this to be a major application of XANTLR.

9

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

Lexical categories become leaf elements:

a options{xmlNodeType=pcdata;}: α ;

<!ELEMENT a (#PCDATA)>

Rules may be mapped to content building blocks (parameter enti-
ties):

a options{xmlNodeType=entity;}: α ;

<!ENTITY % a ’α′’>

The prime operator on meta-variables denotes the transformation of
regular expressions from ANTLR to DTD notation and is recursively
defined as follows:

Sequence and choice combinators are preserved:

(α1 . . . αn)

(α′

1, . . ., α′

n)

(α1 | . . . | αn)

(α′

1 | . . . | α′

n)

So are the modifying combinators:

(α)*

(α′)*

(α)+

(α′)+

(α)?

(α′)?

Empty sub-alternatives (not expressible in DTD) are mapped to
?:

(α1 | . . . | αn |)

(α′

1 | . . . | α′

n)?

Validity of all possible parser output with respect to the so derived
DTD is provable by the same induction patterns, thus giving the pro-
duction tool XANTLR formal semantics.

The ANTLR-generated top-down parsers, together with an event-
based output format, have the valuable property that the AST-producing
parser and the AST consumer can be pipelined. Start tag events do
not interfere with the backtracking algorithm used for disambiguation,
and are emitted as soon as the parser enters a rule in deterministic
mode. This early-response behavior cannot be emulated by LR bottom-
up parsers, where a nonterminal becomes manifest only after the reduc-
tion step of the corresponding grammar rule. On the other hand, though
LL parsing can be extended by backtracking to emulate LR recognition
capabilities (as supported by ANTLR), performance for typical LR phe-
nomena (e.g., for left-associative binary operators) is rather poor.

10

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

2.2 Related Work

ANTLR allows the definition of AST consumers (called tree parsers)
by a grammar. That grammar, however, has to be written by hand, and
its appropriateness for the actual output of an AST-producing parser
cannot be verified automatically.

The technique of specification in terms of homomorphisms, which is
the formal principle behind XANTLR, is well known and heavily used in
the area of algebraic specification (see [15]) and program transformation
(see [4]), but to our knowledge, it has not been coupled with parser
generation before.

3. Data Binding Generation for XML

A XML document type definition (or schema) constitutes a grammar
that can be mapped to the type system of a given programming language,
such as JAVA, allowing for an efficient implementation of the element
tree structure. Each element declaration becomes a type declaration in
the target language. Besides member fields describing the attributes and
contents of an element, statically type-checked transformation methods
can be defined on each element type, such as replacing a child node
by another of the same type, adding a type-conform child node to a
list, or changing the value of a non-fixed attribute. These work directly
on the target-language-level representation, thus providing an efficient
lightweight interface to the document structure, as opposed to the high
genericity level and overhead of XSLT processing, and eliminating the
need for revalidation by incrementally constructing an a priori valid
document.

3.1 The TDOM Algorithm

Figure 3.1 shows the transformation rules behind the TDOM code
generator. These are far from complete and yield only most abstract
pseudo-code, in contrast to the exact formal specification of XANTLR.
However, they may serve as a brief summary of the following prose de-
scriptions.

Of course, every given DTD has to be compiled into a distinct special-
ized set of type declarations. Our implementation, the TDOM compiler,
reads in a DTD, and produces the following JAVA classes:

A class encapsulating the input DTD providing runtime access to
the document type definition.
In the way JAVA reflection captures the JAVA properties (e.g., fields and
methods) of classes, the DTD model specifies their DTD properties (attributes
and content model).

11

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

<!ELEMENT a (α1, . . ., αn)>

class El a extends Element { α′

1; . . .; α′

n; }

(α)?

α′; boolean has α();

(α)* | (α)+

α′[]; int count α();

(α1, . . ., αn)i

class Seq i { α′

1; . . .; α′

n
; }

(. . ., α, . . .)

α′; α′ get α(); void set α(α′);

(α1 | . . . | αn)i

class Choice i { α′

1; . . .; α′

n }

(. . . | α | . . .)i

class Alt α extends Choice i { α′ }

Figure 3: DTD to TDOM transformation (schematic)

An abstract base class for all elements declared in the given DTD.

A class for each element.
Element classes support both validating construction from a W3C-DOM tree
and fast, valid-by-typecheck construction from TDOM objects. Methods to get
and set attributes and content are provided, as well as conversion back to W3C-
DOM. Validation, (i.e., type assignment) of content models read from W3C-
DOM trees and SAX streams (e.g., output of XANTLR-generated parsers) is
provided by a small parser generator: for deterministic content models, an
efficient LL(1)-parser is derived, whereas nondeterministic content can still be
handled by a fall-back breadth-search validator automaton.

A dedicated container class for each content choice or sequence.

A sequence class is just a typed container record for its elements. A choice
container is an abstract base class with one subclass for each alternative, and
some methods for distinguishing between these alternatives.

A class for each attribute.
This class will have a default constructor if the attribute is not required, pro-
viding the default value. Besides, there is a value constructor, a method to get
and (if the attribute is not fixed) to set the current value.

A visitor class implementing generic tree traversal for all nodes
covered by the DTD.

Applications can subclass the visitor to implement selective actions upon en-
countering the desired nodes or patterns in the tree.

Note that these classes do not implement the untyped W3C-DOM
interface, because this would enable arbitrary destructive modification
of the document structure that may yield an invalid document object.

12

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

In a typed environment such as JAVA TDOM, these would show up
as runtime type errors5. If such an access to the document is desired,
abandoning the constraints given by the DTD, the TDOM document
can still be transformed to W3C-DOM, mangled in every desirable (and
undesirable) way, and eventually revalidated from scratch into a new
TDOM object.

The measured performance of TDOM at low-level data access is rough-
ly comparable to that of Xerces DOM, which is a full-fledged, highly
tuned JAVA implementation (cf. Appendix A). We assume that TDOM

will exhibit superior productivity in cases of complex tree pattern match-
ing, easily implementable in the visitor style. Since our development of
TDOM saved us from hand-coding complex W3C-DOM analyzers so far,
we have no significant benchmarks in this area.

3.2 Related Work

There seem to be several implementations of lightweight DOM vari-
ants. The two we have encountered so far, namely DOM light[8] and
JDOM[7] provide native JAVA implementations tuned for the most fre-
quently used W3C-DOM features. As far as we know, they do not
address the issues of validation, validity-preserving transformation and
type-driven analysis that are dominant in the TDOM approach.

4. Comprehensive Example: An Arithmetics
Interpreter

As an example for using XANTLR and TDOM, we implemented an
interpreter (abstract machine) for a toy language that could be found in
any textbook on compiler construction: A program consists of a sequence
of assignments to numeric variables, followed by an expression. Only
basic arithmetic operations are supported. Each variable that is assigned
may be referenced in a subsequent assignment or the final expression.
The parser grammar (technical details omitted) is:

program : (def)* expr EOF ;

def : variable ":=" expr ";" ;

expr : term (sumOp term)* | sumOp term ;

term : factor (productOp factor)* ;

factor options { xmlNodeType = entity ; }

: number | variable | "(" expr ")" ;

number options { xmlNodeType = pcdata ; }

: NUMBER ;

variable options { xmlNodeType = pcdata ; }

: VARIABLE ;

5the infamous ClassCastException

13

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

sumOp : plus | minus ;

plus : "+" ;

minus : "-" ;

productOp : times | divide ;

times : "*" ;

divide : "/" ;

The generated DTD reads as follows:

<!ELEMENT program (def*, expr)>

<!ELEMENT def (variable, expr)>

<!ELEMENT expr ((term, (sumOp, term)*) | (sumOp, term))>

<!ENTITY % factor ’(number | variable | expr)’>

<!ELEMENT term (%factor;, (productOp, %factor;)*)>

<!ELEMENT number (#PCDATA)>

<!ELEMENT variable (#PCDATA)>

<!ELEMENT sumOp (plus | minus)>

<!ELEMENT plus EMPTY>

<!ELEMENT minus EMPTY>

<!ELEMENT productOp (times | divide)>

<!ELEMENT times EMPTY>

<!ELEMENT divide EMPTY>

The visitor that TDOM generates for this DTD can be used as a base
class for, e.g., an interpreter. The complete operational semantics of
our toy language can be implemented by overriding six out of twelve
methods for visiting elements. When invoked on the AST of an input
program, the program result is computed in the field value:

public class ArithExprReducer

extends arith.Visitor {

public double value ;

protected abstract void setVariable(String name, double value) ;

protected abstract double getVariable(String name) ;

public void visit(Element_def def) {

visit(def.getElem_1_expr()) ;

setVariable(def.getElem_1_variable().getPCData(), value) ;

}

public void visit(Element_number number) {

value = Double.parseDouble(number.getPCData()) ;

}

public void visit(Element_variable variable) {

value = getVariable(variable.getPCData()) ;

}

public void visit(Element_expr.Choice_1_Alt_1_Seq_1 sum) {

final double backupValue = value ;

super.visit(sum) ;

switch(sum.getElem_1_sumOp().getChoice_1().getAltIndex()) {

case Element_sumOp.Choice_1_Alt_1.ALT_INDEX:

value = backupValue + value ;

break ;

case Element_sumOp.Choice_1_Alt_2.ALT_INDEX:

value = backupValue - value ;

}

}

public void visit(Element_expr.Choice_1_Alt_2 signed) {

14

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

super.visit(signed) ;

if(signed.getElem_1_sumOp().getChoice_1().isAlt_2())

value = -value ;

}

public void visit(Element_term.Seq_1 product) {

final double backupValue = value ;

super.visit(product) ;

switch(product.getElem_1_productOp().getChoice_1().getAltIndex()) {

case Element_productOp.Choice_1_Alt_1.ALT_INDEX:

value = backupValue * value ;

break ;

case Element_productOp.Choice_1_Alt_2.ALT_INDEX:

value = backupValue / value ;

}

}

}

5. Conclusion and Future Work

We have presented running (albeit prototypic) instances of meta-
programming tools, i.e., program-generating programs that obey formal

transformation semantics. Such tools do more than just save the user
from tedious source code editing. They also allow formal methods to
penetrate deep into the process of software engineering, easing the tasks
of maintenance and verification. With interoperability being an indis-
pensable requirement for such tools, XML has been shown to serve well
as the common denominator of a tool chain with respect to both data
representation and specification.

We consider TDOM a replacement for the generic XSLT approach
aimed at domain specific (i.e., schema specific) tasks calling for perfor-
mance, safety and tight embedding into a hosting language. Possible
interaction, especially with the selection language XPath[6] is a promis-
ing field of research.

The type mapping does not yet extend to the lowest level of access,
e.g., XML attributes containing numeric values should be accessible as
int or double on language level, and (even more important) attributes
of IDREF flavor should be translated to references to other TDOM nodes.
However, DTD is not expressive enough to control the mapping of simple
types. Therefore, we postponed our efforts here and look forward to a
mature unified instance of the numerous XML Schema type definition
languages.[10]

A feature that has been prototypically implemented in the current
TDOM, but that still needs some research, is the automatic generation of
XML compression codecs (cf. Figure 1). When the DTD of a document
is known, all information that can be inferred from the declarations is
redundant in the document. E.g., the textual size of element tags (which

15

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

should be verbose and human-readable in XML text, as opposed to the
cryptic HTML nomenclature) plays no role in auto-compressed XML.

The desirable increase in interoperability of CASE tools and transfor-
mation systems requires further research on compositionality of gram-
mars and re-usability of visitor classes, an issue for theoretic research as
well as for practical software architecture design.

Appendix A. Some Numbers

As a kind of informal benchmark,
we gathered some statistics about a
real-world application of XANTLR and
TDOM. In fact, these numbers are taken
from the aforementioned compiler con-
struction project that actually enforced
the development of such tools by sheer
size. The grammar definition that served
as input for XANTLR defines a typical
domain specific imperative programming
language. The resulting DTD was com-
piled with TDOM. Then, to obtain some
performance characteristics, the parser
was configured to produce textual XML,
and both Xerces-DOM and TDOM ASTs
out of the same example program. Fi-
nally, all terminals of type identifier in
the abstract syntax were retrieved from
the two AST models.6 The result indi-
cates several things:

(1) The DTD generated by XANTLR

is a concise specification of the parser. It
actually reads much easier than the input
grammar, because technical details such
as disambiguation or error handling are
out of the way.

(2) The overhead due to type-safety in
TDOM is mainly static. While the gen-

erated data binding code is tremendously
big compared to the DTD (and does put
quite a bit of extra load on the JAVA
class loader), runtime access seems to per-
form similar to a good-quality homoge-
neous (untyped) DOM.

(3) Not to our surprise, using TDOM

yields no significant improvement in run-
time performance. The main benefits
are presumably found in other phases of
the software life-cycle, namely verifica-
tion and maintenance. This is very much
harder to quantify, and should therefore
be treated as a conjecture.

Sample Grammar (lines of code)
XANTLR Grammar 2,400
ANTLR Parser Class 12,600
DTD 673
TDOM Classes 53,800

Sample Instance Document
Source file 196k
XML AST file 1,389k

DOM vs. TDOM Retrieval
Total No. of Nodes 30,077
Nodes with Tag “Identifier” 4,213
DOM getByTagName 113ms
TDOM visit 111ms

6Accessing all elements of a given tag name is implemented as a builtin function in DOM,
and by overwriting one method of the generic visitor in TDOM.

16

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

References

[1] The lore project. Technical report, Stanford University.
http://www-db.stanford.edu/lore/.

[2] . RELAX (Regular Language description for XML). Relaxer Working Group,
http://www.xml.gr.jp/relax/.

[3] Apache XML Project. Xerces Java Parser. Apache Software Foundation,
http://xml.apache.org/xerces-j.

[4] J. Bergstra, T. Dinesh, J. Field, and J. Heering. A complete transformational
toolkit for compilers. Technical Report CS-R9601, CWI, January 1996.

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible Markup
Language (XML) 1.0 (Second Edition). W3C Recommendation,
http://www.w3.org/TR/2000/REC-xml.

[6] J. Clark and S. DeRose. XML Path Language (XPath). W3C Recommendation,
http://www.w3.org/TR/xpath.

[7] J. Hunter and B. McLaughlin. JDOM. JDOM Project, http://www.jdom.org.

[8] P. Kaplan and T. Kormann. DOM light. A fast and “easy-to-use” DOM-like
API. Koala Project, INRIA, http://www-sop.inria.fr/koala/domlight.

[9] G. Kappel, E. Kapsammer, S. Rausch-Schott, and W. Retschitzegger. X-ray –
toward integrating xml and realational database systems. In Conceptual Mod-
eling – ER 2000. Springer LNCS 1920, 2000.

[10] D. Lee and W. W. Chu. Comparative analysis of six XML schema lan-
guages. In ACM SIGMOD Record 29(3), http://www.cobase.cs.ucla.edu/tech-
docs/dongwon/sigmod-record-00.ps, 2000.

[11] M. Lepper, B. Trancón y Widemann, and J. Wieland. Minimze mark-up !
– Natural writing should guide the design of textual modeling frontends. In
Conceptual Modeling — ER2001, volume 2224 of LNCS. Springer, November
2001.

[12] Microsoft Corporation,
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm.
XLANG — Web Services for Business Process Design, 2001.

[13] M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema
languages using formal language theory. In Extreme Markup Lan-
guages, http://www.cobase.cs.ucla.edu/tech-docs/dongwon/mura0619.ps,
august 2001.

[14] T. Parr. ANTLR Reference Manual. jGuru, http://www.antlr.org/doc.

[15] P. Pepper and M. Wirsing. A Method for the Development of Correct Software.
In M. Broy and S. Jähnichen, editors, KORSO: Methods, Languages, and Tools
for the Construction of Correct Software, LNCS 1009. Springer, 1995.

[16] G. Trausmuth and W. Schneider. Industrial experience with an XML based
configuration service for Java applications. In Proc. of the XSE Workshop,
pages 44–47, 2001.

[17] W3C Note, http://www.w3.org/TR/SOAP. Simple Object Access Protocol
(SOAP) 1.1.

17

 markuslepper.eu

 IS
SN 0

92
8-

89
10

http://markuslepper.eu
http://www.worldcat.org/search?q=0928-8910

