
Constraint Programming in Z

Wolfgang Grieskamp, Markus Lepper, and Jacob Wieland

Technische Universität Berlin, FB13, Institut für Kommunikations- und
Softwaretechnik, Sekr. 5–13, Franklinstr. 28/29, D–10587 Berlin, E-mail:

{wg,lepper,ugh}@cs.tu-berlin.de

Abstract. We present a setting for “programming” in the set-based
specification language Z which is based on concurrent constraint resolu-
tion. The setting is implemented as part of the tool integration environ-
ment ZETA where it is used for executing specifications for the purpose
of test-data evaluation and simulation.

1 Introduction

The automatic evaluation of test cases for safety-critical systems is an interesting
application that can help to put formal methods into industrial practice. Some
studies report that more than 50% of development costs in this application area
go into testing. A setting for test-case evaluation that can improve this situation
is as follows: given a requirements specification, some input data describing a
test case, and the output data from a run of the system’s implementation on the
given input, we check by executing the specification whether the implementation
meets its requirements.

In this paper, we present a setting for “programming” in the set-based spec-
ification language Z [13] which is based on concurrent constraint resolution as
described in [5]. The setting is implemented as part of the tool integration en-
vironment ZETA [3] where it is used for executing specifications for the purpose
of test-case evaluation and simulation. Constraints are represented as finite or
infinite sets, and sets are first-order citizens – a key feature of the approach.
As an example showing the capabilities, a shallow encoding of discrete temporal
interval logics (in the style of Moszkowski’s logic [10]) is given – an application
which stems from a research project funded by Daimler-Chrysler for the purpose
of test-case evaluation for embedded systems.

The paper starts with a short introduction into Z (Sec. 2). We then explore
the basics of constraint programming in Z (Sec. 3). In Sec. 4, the encoding of
temporal interval logics is defined and illustrated by examples. Related work is
discussed in the conclusion. In the appendix, a complete formal definition of the
computation model of Z is given for the interested reader. The model is based
on reducing Z to a small intermediate calculus and defining a natural semantics
for the calculus.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

2 Wolfgang Grieskamp, Markus Lepper, and Jacob Wieland

2 A Sketch of Z

Z is a relatively wide-spread formal notation whose ISO standard is currently
forthcoming [18]. Though Z’s usual application domain is for high-level require-
ments specification, its orientation on sets makes it well suited for expressing
constraint problems. We give a short introduction into the basic design of the
language, and refer for further information for instance to [13].

The semantic model of Z is based on a typed set theory. Given a collection
of so-called given types, Z types are constructed by power set, P τ , cartesian

product, τ1 × . . . × τn , and so-called schemas, [x1 : τ1; . . . ; xn : τn]. Schemas
denote a set of bindings, which are tuples with named components.

A distinguishing feature of Z is that types are “first-order citizens” of the
language. A type is also an expression which denotes a set. As a set, it just has
the property of being the largest such one containing elements of the same type.
For example, the given type Z is the largest set containing (integral) numbers;
the set of natural numbers, N, is a subset of these. We can use both Z and N in
declarations such as x : Z, y : N, or in expressions like P N or Z × N.

A central constituting language element of Z is so-called schema text, which
denotes a constrained binding set. Schema text, D | P , is built from a set of
declarations D and a set of properties P . Properties are given by first-order
predicate formulas over relational propositions. For instance, x , y : N | x ≤ y

represents the set of bindings where both components x and y are constrained
to be natural numbers by the declaration, and where x is constrained to be less
than or equal to y by the property.

Schema text is used in manifold ways in Z. (1) We use it to directly denote
sets of bindings, as in [x , y : N | x ≤ y], which means the set {〈| x == 0, y ==
0 |〉, 〈| x == 0, y == 1 |〉, . . .}. (2) We use it in quantifiers. For example, the
universal quantifier is written as ∀D | P • Q , where D | P spawns the range of
quantified values for which the property Q must hold. This notation is equivalent
to ∀D • P ⇒ Q . Similarly, ∃D | P • Q , which is equivalent to ∃D • P ∧ Q .
(3) We use it in function abstractions, λD | P • E , where D | P denotes the
domain of the function. The binding set D | P is converted into a set of tuples
by removing the names of the components. For instance, the domain of the
abstraction λ x : N; y : N | y 6= 0 • x div y is the set of pairs (x representing
the first and y the second component) with the specified property (y 6= 0).
Functions are just special sets, such that the above abstraction is an element of
the set P((N × N) × N). (4) Schema text s used in set comprehension, {D | P}.
The binding set D | P is converted into a set of tuples by removing the names
of the components. A variant of comprehension, {D | P • E}, allows us to
explicitly construct the result value, as e.g. in {x : N | x mod 2 = 0 • (x , x + 1)},
which describes the set of pairs where an even number is related with its direct
successor. (5) Finally, schema text is also used for introducing global constants.
Using the notation D

P

the names of the bindings of D | P are introduced

as global constants. If D | P contains more then one binding, the constants are
loosely specified. If D | P is empty, the specification is inconsistent.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Constraint Programming in Z 3

Z provides a powerful so-called mathematical toolkit, defining notions such as
numbers, relations, and functions – a fairly standard account of basic set theory.
The toolkit contains set constructors such as E ↔E ′ (the set of binary relations,
an abbreviation for P(E × E ′)), E 7→ E ′ (the set of partial functions), E → E ′

(the set of total functions), ranE resp. domE (the range and domain of a binary
relation or function), E∼ (relational inversion), and so on.

The forthcoming Z Standard defines several lexical representations, one of
them is LATEX, which we use in this paper. Thus the LATEX source of this docu-
ment is also the source for processing the examples it contains under the ZETA

system.

3 Basics of Constraint Programming in Z

In [5] a computation model based on concurrent constraint resolution has been
developed for Z (the model is formally defined in the appendix). A high-
performance virtual machine has been derived, which is implemented as part
of the notation and tool integration environment ZETA [3]. In this implemen-
tation, all idioms of Z which are related to functional and logic programming
languages are executable. Below, we look at some examples to illustrate the basic
features.

3.1 Sets ⊃ Relations ⊃ Functions

As sets are paradigmatic for the specification level of Z, they are for the ex-
ecution level. Set objects – relations or functions – are eventually defined by
(recursive) equations, as in the following example, where we define the free type
of natural numbers, an addition function on them, and a less-then relation. We
avoid syntactic sugar to get the principles right:

N ::= Z | S 〈〈N 〉〉 three == S (S (S (Z)))

add : P((N × N) × N)

add = {y : N • ((Z , y), y)} ∪ {x , y , z : N | ((x , y), z) ∈ add • ((S x , y),S z)}

less == {x , y , z : N | ((x ,S z), y) ∈ add • (x , y)}

A few remarks on the syntax. With ::= a free type is introduced in Z. The decla-
ration form n == E declares and defines a (non-recursive) name simultaneously.
Recall that after the • in a set-comprehension a generator expression follows.

We may now execute queries such as the following, where we ask for the pair
of sets less and greater than three:

({x : N | (x , three) ∈ less}, {x : N | (three, x) ∈ less})

V ({Z,S(Z),S(S(Z))},{S(S(S(S(x))))})

Note that the second value of the resulting pair is a singleton set containing the
free variable x . These capabilities are similar to logic programming. In fact, we
can give a translation from any clause-based system to a system of recursive

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

4 Wolfgang Grieskamp, Markus Lepper, and Jacob Wieland

set-equations in the style given for add , where we collect all clauses for the
same relational symbol into a union of set-comprehensions, and map literals
R(e1, . . . , en) to membership tests (e1, . . . , en) ∈ R. (Clause-style definition is
provided as syntactic sugar in ZETA, which is eliminated by such a translation).

The functional paradigm comes into play as follows. A binary relation R can
be applied, written as R e, which is syntactic sugar for the expression µ y : X |
(e, y) ∈ R. This expression is defined iff their exists a unique y such that the
constraint is satisfied; it then delivers this y . The set add is a binary relation
(since it is member of the set P((N ×N)×N)), and therefore we can for example
evaluate add(three, three)V S(S(S(S(S(S(Z)))))).

Note the semantic difference of (e, y) ∈ R and y = R e: the first is not
satisfied if R is not defined at e, or produces several solutions for y if R is not
unique at e, whereas the second is undefined in these cases. This difference is
resembled in the implementation: application, µ-expressions, and related forms
are realized by encapsulated search. During encapsulated search, free variables
from the enclosing context are not allowed to be bound. A constraint requiring
a value for such variables residuates until the context binds the variable. As
a consequence, if we had defined the recursive path of add as {x , y , z : N |
z = add(x , y) • ((S x , y),S z)} (instead of using ((x , y), z) ∈ add), backwards
computation is not be possible:

{x : N | (x , three) ∈ less}

V unresolved constraints:

LTX:cpinz(48.24-48.31) waiting for variable x

Here, the encapsulated search for add(x , y), solving µ z : N | ((x , y), z) ∈ add ,
cannot continue, since it is not allowed to produce bindings for the context
variables x and y . This can be seen as a restriction – but actually we see it as
a clean way a user can influence execution order in our framework, similar as
discussed for the functional logic paradigm in [6].

3.2 Sets of Sets

The elegance of the functional paradigm comes mostly from the fact that func-
tions are first-order citizens. In our implementation of execution for Z, sets are
full first-order citizens as well – in particular we can build sets of sets. For ex-
ample, we can implement operators such as domain projection, inversion, and
relational image as follows (where the definition below uses Z’s boxing style for
introducing generics):

[X ,Y]

dom == λ R : P(X × Y) • {x : X ; y : Y | (x , y) ∈ R • x}
∼ == λR : P(X × Y) • {x : X ; y : Y | (x , y) ∈ R • (y , x)}
(| |) == λR : P(X × Y); S : P X • {x : X ; y : Y | x ∈ S ∧ (x , y) ∈ R • y}

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Constraint Programming in Z 5

We can now, for instance, query for the relational image, R(|S |), of the add

function over the cartesian product of the numbers less then three:

let ns == {x : N | (x ,S (S (S (Z)))) ∈ less} • add(|ns × ns |)

V {Z,S(Z),S(S(Z)),S(S(S(Z))),S(S(S(S(Z))))}

It is also possible to define the arrow types of Z, as shown below for the set
of partial functions:

[X ,Y]

7→ == {R : P(X × Y) | (∀ x : X | x ∈ domR • ∃
1
y : Y • (x , y) ∈ R)}

This example makes use of universal and unique existential quantification, which
are of non-executability in our setting. These quantors are resolved by encap-
sulated search, and we must be able to finitely enumerate the quantified range.
Thus, if we try to check whether add is a function, we get in a few seconds:

add ∈ N × N 7→ N

V still searching after 200000 steps

gc # 1 reclaimed 28674k of 32770k (peak was 34818k)

...

In enumerating add our computation diverges. However, for finite relations it
works:
(λ x , y : N | (x , three) ∈ less ; (y , three) ∈ less • add(x , y)) ∈ N × N 7→ N

V *true*

The example also illustrates a rough edge of our approach. The Z semantics
defines the schema text f : N 7→N to be equivalent to f : P(N ×N) | f ∈ N 7→N .
This treatment causes serious problems for executability, as we have seen. In the
implementation we therefore discard constraints introduced by declarations; they
are treated as assumptions which may be utilized by the compiler. If a declared
membership is actually a required constraint, the user has to place it in the
constraint part of schema text.

3.3 Restrictions

Our implementation of constraint programming in Z has several restrictions.
The most important for our current application to test-case evaluation is that
no sub-solvers for arithmetic constraints are employed. Work is in progress to
integrate such solvers.

Moreover, we currently do not incorporate finite set-unification [1]. As comes
apparent in the formal definition of the computation model in the Appendix, a
constraint which needs to unify sets tries to enumerate them and residuates until
free variables in a set’s extension are bound. There is no conceptual or technical

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

6 Wolfgang Grieskamp, Markus Lepper, and Jacob Wieland

reason why set unification could not be added to the model – it is just not there
because in our running applications for test-case evaluation it is not required.

4 Encoding of Temporal Interval Logics

Temporal interval logics [10, 4] is a powerful tool for describing requirements on
traces of the behavior of real-time systems. For a discrete version of this logic,
related to Motszkowski version of ITL, an embedding into Z has been described
in [?]. Here, we develop an executable shallow encoding for the positive subset
of this kind of ITL – that is a representation which does not require language
or implementation extensions. The encoding supports resolution for timing and
observation constraints (going behind Moszkowski’s Tempura implementation)
and is illustrated by some examples. The purpose of the exercise is to demon-
strate how the flexibility of the Z language and the higher-order features of our
constraint programming implementation facilitate domain-specific extensions in
a quite natural way.

4.1 The Encoding

We define temporal formulas over some abstract type STATE , such that the
intervals we look at have type seqSTATE (seq is Z’s type for sequences). The
type STATE will be refined later on.

The encoding of interval logic is given in Fig. 1. A predicate over a state
binding is a unary relation, p ∈ SP = PSTATE . A temporal formula is encoded
by a set of so-called arcs, as ∈ TF = PARC 1, which basically model a transition
relation. An arc is either a proper transition, tr(p,w), where p is the guard for
this transition and w a followup formula, or the special arc eot which indicates
that a interval which satisfies this formula may end at this point. xs ∈T w is
the satisfaction relation of this encoding of temporal formulas, and defined as
follows: if eot is an arc of the transition relation, then the empty interval is
valid. Moreover, all intervals are valid such that their exists a transition whose
predicate fulfills the head of the interval, and the tail of the interval satisfies the
followup formula of this transition.

Fig. 2 defines the basic operators of our logic. The formula which is satisfied
exactly by the empty trace is encoded by the singleton transition containing the
eot arc. Temporal falsity is described by the empty set of arcs. w1tww and w1uw2

model disjunction and conjunction. w1
o
9 w2 is sequential composition (“chop”).

w∗ is the repetition of w for zero or more times. Since our implementation of
Z imposes a strict (eager) evaluation order, we need to embed the recursive
reference to ∗ in a set-comprehension, {a : ARC | a ∈ w∗}. The formula ! p

holds for those intervals of length 1 for which p holds at the singleton state.

1 We use the powerset-constructor P which models a computable powerset domain.
Using the general power, P, our free type definition of ARC would be inconsistent
in Z, since a free type’s constructor cannot have a general powerset of the type in
its domain.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Constraint Programming in Z 7

Fig. 1 Encoding of Interval Logic

SP == P STATE TF == PARC

ARC ::= eot | tr〈〈SP × TF 〉〉 eot? == {w : TF | eot ∈ w}

∈T : seq STATE ↔ TF

(∈T) = {w : TF | eot? w • (〈〉,w)}∪

{x : STATE ; xs : seq STATE ; p : SP ; w ,w ′ : TF |

tr(p,w ′) ∈ w ; x ∈ p; xs ∈T w ′ • (〈x 〉a xs, w)}

Fig. 2 Operators of Interval Logic

empty == {eot} false == ∅[ARC]

t == λw1,w2 : TF • w1 ∪ w2
F

== λws : PTF •
[

ws

u : TF × TF → TF

(u) = λw1,w2 : TF •

(if eot? w1 ∧ eot? w2 then empty else false)t

{p1, p2 : SP ; w ′

1,w
′

2 : TF | tr(p1,w
′

1) ∈ w1; tr(p2,w
′

2) ∈ w2 • tr(p1 ∩ p2,w
′

1 u w ′

2)}
o
9 : TF ×TF → TF

(o
9) = λw1,w2 : TF •

(if eot? w1 then w2 else false) t {p : SP ; w ′

1 : TF | tr(p, w ′

1) ∈ w1 • tr(p,w ′

1
o
9 w2)}

∗ : TF → TF

(∗) = λw : TF • empty t ((w \ empty) o
9 {a : ARC | a ∈ w∗})

! == λ p : SP • {tr(p, empty)} skip == ! STATE

true == skip
∗ d e == λ p : SP • ! p o

9 (! p)∗

; == λ p : SP ; w : TF • !{x : STATE | x /∈ p}∗ o
9 ((! p o

9 w) t empty)

The formula skip holds for arbitrary singleton intervals. Temporal truthness,
satisfied by any interval, is the repetition of skip. With dpe those intervals of
length greater 0 are described in which p holds at each point. p ; w describes
temporal implication: it is satisfied for those intervals that when at some point
p is observed then afterwards until the end of the interval w holds.

We take a look at the encoding of some formulas. Suppose type STATE is
instantiated with Z. Recall that our observation predicates are sets, hence we
can use e.g. {1} as a predicate which is exactly true for the state 1:

!{1} o
9 empty o

9 !{2} o
9 empty V {tr({1},{tr({2},{eot})})}

!{1}∗ V {eot,tr({1},{eot,tr({1},...)})}
!{2, 3}∗ u (!{1, 2} o

9 !{3, 4})V {tr({2},{tr({3},{eot})})}

The first example shows neutrality of empty on chop. The next example illus-
trates how the repetition operator incrementally “unrolls” its operand (the ZETA

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

8 Wolfgang Grieskamp, Markus Lepper, and Jacob Wieland

displayer has stopped unrolling after a certain depth). In the last example, the
effect of conjunction is shown.

Using the satisfaction relation t ∈T w , we can now test whether a trace t

fulfills a formula w and – provided the used predicates are finite – also generate
the set of traces which satisfy a formula:

〈1, 2, 3, 1, 2, 1〉 ∈T ({2} ; d{x : Z | x ≥ 2}e)∗ V *false*

〈2, 2, 2, 1, 2, 2〉 ∈T ({2} ; d{x : Z | x ≥ 2}e)∗ V *true*

{t : seqSTATE | t ∈T d{1, 2}e} V {<1>,<2>,<1,1>,<1,2>,...}

In the first two examples above, the formula states that the interval must be
partitionable into n subintervals such that in each subinterval, whenever a state
2 is encountered, the remaining states until the end of the subinterval are greater
or equal 2, and (since dpe is only satisfied for intervals with length greater 0)
that there are remaining states. Note that this requires to choose the right
partitioning between several possibilities.

Our encoding allows to use logical variables in state predicates. For example,
we can define a formula which is satisfied by all traces which contain adjacent
values. The logical variable can be existential quantified, or as in the example
below, enumerated by use in a set comprehension:

{x : STATE | 〈4, 1, 1, 3, 2, 2〉 ∈T true o
9 !{x} o

9 !{x} o
9 true}V {1,2}

We will use this feature in the next section in order to introduce timing con-
straints.

4.2 Timing Constraints

Due to the higher-orderness of Z and our implementation, it is easily possible to
add new temporal operators. Suppose that our data space STATE is partitioned
such that it contains a time stamp t?2, holding the current absolute system time,
a duration stamp d?, describing the distance to the next state, and some sensors,
given by a schema SENSORS (to be refined for the concrete application) which
is included into STATE :

T == Z STATE == [t?, d? : T ; SENSORS]

We can now define a duration operator DUR(d) which holds for those intervals
whose duration is d :

DUR == λ d : T •
!([STATE | d = d?])t
⊔
{t0 : T • !([STATE | t0 = t?]) o

9 true o
9 !([STATE | d = t? − t0 + d?])}

This definition uses the “generalized disjunction” for temporal formulas (Fig. 2)
to introduce a local variable t0 which binds the time stamp when entering the

2 Currently, in our implementation of Z only integral numbers are supported – hence
we define type T to be Z.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Constraint Programming in Z 9

interval satisfying DUR(d). Semantically, the set-comprehension above denotes
the set of all formulas such that t0 has some binding according to the given
constraints. Since a temporal formula is a set of arcs, the generalized disjunction
simply collects all arcs from all formulas, by its definition

⊔
=

⋃
. The name⋃

is in turn defined in the toolkit as
⋃

SS = {x : X ; S : PX | S ∈ SS ; x ∈
S • x}. Our implementation enumerates the solutions to S ∈ SS symbolically;
henceforth

⋃
also works if SS is not finite, as in the definition of DUR.

We take a look at an example. We calculate the partitions of an interval
which have equal duration, using repetition on the duration operator:

{d : T | d < 8; 〈〈| t? == 0, d? == 1 |〉, 〈| t? == 1, d? == 1 |〉, 〈| t? == 2, d? == 2 |〉,

〈| t? == 4, d? == 2 |〉, 〈| t? == 6, d? == 2 |〉〉 ∈T DUR(d)∗}

V {2,4}

Note that for the duration 2, the first partition contains two states, whereas the
remaining partitions contain one.

4.3 Application: Requirements Specification

Fig. 3 gives an example how to apply our temporal logics for requirements speci-
fication. The specification defines some aspects of the behavior of a (much simpli-
fied) elevator controller. Such a specification can then be used for test-evaluation,
feeding it with the concrete traces produced by an implementation of the con-
troller.

The elevator’s state is modeled by a set of sensors which are combined with
time stamps into the system state STATE as described in the previous section.
The sensors are the current location of the elevator, the velocity of the elevator,
and two sets which represent the state of doors at each floor and of request
buttons. Floors are modeled as a subset of locations.

Auxiliary state predicates At f , Open f and Request f are introduced, to char-
acterize the according observations. Our requirements are composed from the
conjunction of three sub-requirements:

– Saftey1: in each state, if the elevator is moving (velocity 6= 0), then all doors
must be closed

– Saftey2: in each state, the door of a floor can only be open if the elevator is
At this floor (note that this implies that at each time at maximal one door
can be open)

– Serve: describing a service situation – if the elevator is requested from some
floor, then it cannot pass this floor without stopping at it. If it has once
reached the floor, it must open the door at this floor at least after delay sec-
onds. (The specification does not handles error situations, where the elevator
does not work for some reason.)

4.4 Application: Debugging

A further application of the encoding of interval logics lies in the analysis of
traces of system behavior on a lower level than by a requirements specification,

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

10 Wolfgang Grieskamp, Markus Lepper, and Jacob Wieland

Fig. 3 Elevator Requirements

LOCATION == N VELOCITY == N

FLOOR == {0, 20, 40, 60, 80, 100} delay == 30

SENSORS
location : LOCATION ; velocity : VELOCITY ; open, request : P FLOOR

At == λ f : FLOOR • [STATE | location = f]

Open == λ f : FLOOR • [STATE | f ∈ open]

Request == λ f : FLOOR • [STATE | f ∈ request]

Safety1 == d[STATE | velocity 6= 0 ⇒ open = ∅]e

Safety2 == d[STATE | ∀ f : FLOOR | Open f • At f]e

Serve ==
F

{f : FLOOR; d : T | d ≤ delay •

Request f ; (!(¬ At f))∗ o
9 (dAt f e u DUR d u (true o

9 dOpen f e))}

Requirements == Safety1 u Safety2 u Serve∗

for example for the purpose of debugging. Again, the higher-orderness of our
setting allows us to define suitable abstractions which facilitate such an activity.

As an example, the following abstraction binds all time instances on which the
derivation over time of two subsequent samples exceeds a certain value (below,
the Z form θSTATE extracts a state binding in the current schema context):

spike == λ diff : Z; at : T ; f : (STATE → Z)•⊔
{v0 : Z; t0 : T •

!([STATE | v0 = f (θSTATE); t0 = t?])o9
!([STATE | at = t?; abs((f (θSTATE) − v0) div (at − t0)) > diff])}

For the elevator, for example, we might want to check whether their are spikes
in the velocity: an acceleration of more then 2 m

s2 indicates a sensor hardware
error. To find points in time where such an error occurs we execute:

{t : T | 〈〈| t? == 0, velocity == 2, . . . |〉, 〈| t? == 1, velocity == 16, . . . |〉,

〈| t? == 2, velocity == 16, . . . |〉, 〈| t? == 3, velocity == 48, . . . |〉〉

∈T true o
9 spike(2, t , λ STATE • velocity) o

9 true}

V {1,3}

5 Conclusion and Related Work

We have presented a practical, working setting for constraint programming based
on the Z specification language. The application to animation and test-evaluation
of requirement specifications has been illustrated. The Z language, though pri-
marily designed for specification, has been shown to be a suitable environment

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Constraint Programming in Z 11

for embedding constraint programming. The examples given proved that higher-
orderness is a key feature for an environment where we can add new abstractions
and notation such as temporal logics in a convenient and consistent way. A for-
mal definition of the underlying computation model is found in the appendix.

Executing Z. Animation of the “imperative” part of Z is provided by the ZANS
tool [8], imperative meaning Z’s specification style for sequential systems us-
ing state transition schemas. This approach is highly restricted. An elaborated
functional approach for executing Z has been described in [14], though no imple-
mentation exists today, and logic resolution is not employed. Other approaches
are based on a mapping to Prolog (e.g. [16, 17]), but do not support higher-
orderness. The approach presented in this paper goes beyond all the others,
since it allows the combination of the functional and logic aspects of Z in a
higher-order setting.

Functional Logic Languages and Logic Functional Languages. There is a close
relationship of our setting to functional logic languages such as Curry [7] or Oz
[12]: in these languages it is possible to write functions which return constraints,
enabling abstractions as have been used in this paper. However, our setting pro-
vides a tighter integration and has a richer predicate language as f.i. Curry,
including negation and universal quantification which are treated by encapsu-
lated search. The role of a function as a special kind of relation as a special kind
of set, and of application e e ′ just as an abbreviation for µ y | (e ′, y) ∈ e, makes
this tight integration possible (in the appendix it is shown that µ again is just a
special case of the more general concept of homomorphisms over sets, realizing
encapsulated search).

The relation to logic languages with functional features, such as RELFUN
[2] or λ-Prolog [11], is less close. These languages are oriented at a clause-based
notational style and implementation technique and focus more on relations which
can take functions as parameters, whereas we are more interested in functions
which take relations as parameters.

Constraint Resolution Techniques. Currently, our implementation is not very
ambitious regarding the basic employed resolution techniques. Central to the
computation model is not the basic solver technology (which is currently mere
term unification) but the management of abstractions of constraints via sets.
However, the integration of specialized solvers for arithmetic, interval and tem-
poral constraints is required for our application to test-evaluation. The extension
of the model to an architecture of cooperating basic solvers, which are coordi-
nated by our higher-order framework, is therefore subject of our current work.

Acknowledgment. Thanks go to Petra Hofstedt for fruitful discussions in the CP
working group at the TUB.

References

1. P. Arenas-Sanchez and A. Dovier. A minimality study for set unification. Journal
of Functional and Logic Programming, 1997(7), 1997.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

12 Wolfgang Grieskamp, Markus Lepper, and Jacob Wieland

2. H. Boley. A Tight, Practical Integration of Relations and Functions, volume 1712
of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1999.

3. R. Büssow and W. Grieskamp. A Modular Framework for the Integration of Het-
erogenous Notations and Tools. In K. Araki, A. Galloway, and K. Taguchi, editors,
Proc. of the 1st Intl. Conference on Integrated Formal Methods – IFM’99. Springer-
Verlag, London, June 1999.

4. Z. Chaochen, C. A. R. Hoare, and A. Ravn. A calculus of durations. Information
Processing Letters, 40(5), 1991.

5. W. Grieskamp. A Set-Based Calculus and its Implementation. PhD thesis, Tech-
nische Universität Berlin, 1999.

6. M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19(20), 1994.

7. M. Hanus. Curry – an integrated functional logic language. Technical report,
Internet, 1999. Language report version 0.5.

8. X. Jia. An approach to animating Z specifications. Internet: http://saturn.cs.
depaul.edu/~fm/zans.html, 1996.

9. G. Kahn. Natural semantics. In Symposium on Theoretical Computer Science
(STACS’97), volume 247 of Lecture Notes in Computer Science, 1987.

10. B. Moszkowski. Executing Temporal Logic Programs. Cambridge University Press,
1986. updated version from the authors home page.

11. G. Nadathur and D. Miller. An overview of λProlog. In Proc. 5th Conference on
Logic Programming & 5th Symposium on Logic Programming (Seattle). MIT Press,
1988.

12. G. Smolka. Concurrent constraint programming based on functional programming.
In C. Hankin, editor, Programming Languages and Systems, Lecture Notes in Com-
puter Science, vol. 1381, pages 1–11, Lisbon, Portugal, 1998. Springer-Verlag.

13. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

14. S. Valentine. The programming language Z−−. Information and Software Tech-
nology, 37(5–6):293–301, May–June 1995.

15. D. H. D. Warren. The extended andorra model with implicit control. In ICLP’90
Parallel Logic Programming Workshop, 1990.

16. M. M. West and B. M. Eaglestone. Software development: Two approaches to an-
imation of Z specifications using Prolog. IEE/BCS Software Engineering Journal,
7(4):264–276, July 1992.

17. M. Winikoff, P. Dart, and E. Kazmierczak. Rapid prototyping using formal speci-
fications. In Proceedings of the Australasian Computer Science Conference, 1998.

18. Drafts for the Z ISO standard. Ian Toyn (editor). URL:
http://www.cs.york.ac.uk/~ian/zstan, 1999.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Constraint Programming in Z 13

A Computation Model

In this appendix, we give the formal definition of the computation model of
Z. First, we construct an intermediate calculus, called µZ , to which the Z lan-
guage is reduced. Next, computation in µZ is defined in the style of natural
semantics [9].

Let x be variable symbols and let ρ be (term) constructor symbols. The
syntax of µZ is defined as follows:

e ∈ E ::= x | ρ(e) | 0 | {e} | e ∪ e ′ | {p \ x | φ} | homδe

p ∈ P⊆E; φ ∈ C ::= e ⊆ e ′ | true | φ∧ φ′; δ ∈ ∆ == {µ, E, . . .}

The form ρ(e) describes a term constructor application, where e is a sequence
of expressions. The set of patterns, P, are those expressions which are solely
built from variables x and constructor applications. The form 0 is the empty set,
The form {e} a singleton set, the form e ∪ e ′ set union. {p \ x | φ} denotes a set
comprehension, and is the set of values which match the pattern p such that there
exists a solution for the local existential variables x such that the constraint φ is
satisfied under the substitution of the match. We will write {p | φ} for the case
that #x = 0. Constraints φ are tautologies, subset constraints and constraint
conjunction.

The expression form homδe denotes a homomorphism on the set e, which
enumerates the elements of e to compute a result from them. The µZ calcu-
lus provides a fixed (but extensible) number of builtin homomorphisms, whose
treatment in the computation model is homogeneous. Here, we will only use two
of them. The µ-homomorphism determines the µ-value of a set, and is defined
iff the set is not empty and contains no distinct elements; the unique element
is then delivered. The E-homomorphism forces the extensional enumeration of
elements of a set: it is defined iff the set is finitely enumeratable, then yielding
the set itself (in its extensional representation).

It is possible to map all constructs of Z to the µZ calculus in a natural way.
The most interesting part here are Z properties, whose mapping is performed
in a context of a µZ set comprehension, {p \ x | C q}, where C is a conjunctive
context of µZ constraints, and q is a not yet mapped Z property (the restriction
to a comprehension context is not a real one, since an entire Z specification is
treated as a top-level set comprehension). In order to represent truth values,
sets over a singleton type are used, whose element is constructed by tt, such
that truth is {tt} and falsity 0:

{p \ x | C(q ∨ q ′)} ; {p \ x | C({tt}⊆{tt | q} ∪ {tt | q ′})}
{p \ x | C(q ⇒ q ′)} ; {p \ x | C({tt | q}⊆{tt | q ′})}
{p \ x | C(¬ q)} ; {p \ x | C({tt | q}⊆ 0)}
{p \ x | C(∃ y : e | q • q ′)} ; {p \ x , y | C(q ∧ q ′)}
{p \ x | C(∀ y : e | q • q ′)} ; {p \ x | C({y | q}⊆{y | q ′})}

Note that constraints introduced by declarations, y : e, are discarded, as dis-
cussed in Sec. 3.2. Further concepts of Z, for example the schema calculus, in-
troduce no difficulties, and their mapping is therefore left open here.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

14 Wolfgang Grieskamp, Markus Lepper, and Jacob Wieland

We now define the natural semantics of µZ . Values are a normal form of
expressions as specified by the following grammar:

v ∈ EV ::= ρ(v) | 0 | {v} | {p \ x | φ} | v ∪ v ′ | x

Values can be “cyclic”, that is regularly infinite. With freeze X v the vari-
ables x ∈ X are “frozen” in v , mapping each x to a unique variable xf . With
unfreeze X v variables are unfrozen. The function free v delivers those free vari-
ables in a value which are not frozen, the function frozen v those which are. A
substitution is a mapping from variables to values, defined in the usual way.
With boundσ = {x : domσ | σx 6= x} the bound variables of a substitution are
denoted. With σ[x := v] we extend a substitution by a variable assignment. A
(partial) equality on values, written as v ∼ v ′, is available. Variables (frozen or
not) are equal only by name, set comprehensions never. The equality takes com-
mutativity, associativity and idempotence of set union into account. The relation
v 6∼ v ′ indicates inequality, and is not the reverse of v ∼ v ′: inequality of variables
of different names cannot be decided, as well as inequality of set comprehensions.
A goal is a substitution paired with a constraint, written as θ = σ :: φ. A choice

is a sequence of goals, θ = 〈θ1, . . . , θn〉. The propagation of a substitution over
a choice is defined as σB〈σ1 :: φ1, . . . , σn :: φn 〉 = 〈σ ◦ σ1 :: φ1, . . . , σ ◦ σn :: φn 〉

Computation is defined by two relations which are mutually dependent. The
first relation, e

σ
−→ e ′, describes a reduction step on expressions under the

substitution σ. The second, θ θ
′

, describes a resolution step by mapping a
choice into a choice. The rules for e

σ
−→ e ′ are given in Fig. 4. S describes a

strict reduction context, which is specified by a “grammar with a hole”. The
intermediate expression form HOMδ(hs ,X , x , θ) is used to represent the state of
homomorphism reduction, where hs is the current internal state of the according
homomorphism δ. start , next , stop and end describe the behavior of homomor-
phisms, and are provided with definitions for µ and E, where we assume that
unmentioned argument cases are not in the domain of the according functions
(the domain test is used for driving the rules). We have not used the stop possi-
bility, since both homomorphisms need to enumerate the entire set – but other
homomorphisms may stop enumeration after the first solution is found.

The rules for θ θ
′

are given in Fig. 5. C describes a conjunctive context
where the next resolution step is to be applied. The choice of the context is
non-deterministic, indicating that constraints are concurrently reduced. In Rule
C9, we try to resolve equality on sets which contain set-comprehensions by enu-
meration. Rule C12 models the import of a set comprehension into a resolution
context – this is the place where we instantiate constraints. C14 creates a choice
point – in an implementation, we defer applying this rule as long as possible,
employing the Andorra Principle [15]. The (intended) restrictions of the model
become apparent in the kind of subset-constraints not handled: non-trivial con-
straints where free variables appear at the left or the right side and unions at
the right side where the left set is not a singleton.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Constraint Programming in Z 15

Fig. 4 Expression Reduction Rules

S · ::= (S ·)∪ e | e ∪(S ·) | {S ·} | ρ(. . . ,S ·, . . .) | homδ(S ·) | ·

E1

e
σ

−→ e ′

S e
σ

−→ S e ′
E2

x ∈ boundσ

x
σ

−→ σx

E3

X = free v ; x /∈ X ∪ frozen v

homδv
σ

−→ HOMδ(start δ,X , x , 〈σ :: {x}⊆ freeze X v〉)

E4

σB θ θ
′

HOMδ(hs,X , x , θ)
σ

−→ HOMδ(hs, X , x , θ
′

)

E5

(hs, σ′ x) ∈ dom(next δ)

HOMδ(hs,X , x , 〈σ′ :: true〉a θ)
σ

−→ HOMδ(next δ (hs, σ′ x),X , x , θ)

E6

(hs, σ′ x) ∈ dom(stop δ)

HOMδ(hs,X , x , 〈σ′ :: true〉a θ)
σ

−→ unfreeze X (stop δ (hs, σ′ x))

E7

hs ∈ dom(end δ)

HOMδ(hs, X , x , 〈〉)
σ

−→ unfreeze X (end δ hs)

start E = 0

next E (v , v ′) = v ∪{v ′}
end E v = v

start µ = ∅

next µ (∅, v) = {v} if free(v) = ∅

next µ ({v}, v ′) = {v} if v ∼ v ′

end µ {v} = v

Fig. 5 Constraint Resolution Rules

C · ::= (C ·)∧φ | φ∧(C ·) | · C1

〈σ :: φ〉 〈σ1 :: φ1, . . . , σn :: φn〉

〈σ :: C φ〉a θ 〈σ1 :: C φ1, . . . , σn :: C φn 〉a θ

C2

i , j ∈ {1, 2}; i 6= j ; φi = true

〈σ :: C(φ1 ∧φ2)〉a θ 〈σ :: C φj 〉a θ
C3

ei
σ

−→ e ′

i ; i , j ∈ {1, 2}; i 6= j ; e ′

j = ej

〈σ :: e1 ⊆ e2〉 〈σ :: e ′

1 ⊆ e ′

2〉

C4

〈σ :: {ρ(v1, . . . , vn)}⊆{ρ(v ′

1, . . . , v
′

n)}〉 〈σ :: {v1}⊆{v ′

1}∧ . . .∧{vn}⊆{v ′

n}〉

C5

ρ 6= ρ′

〈σ :: {ρ(. . .)}⊆{ρ′(. . .)}〉 〈〉
C6

i , j ∈ {1, 2}; i 6= j
vi not frozen variable ; vi /∈ boundσ

〈σ :: {v1}⊆{v2}〉 〈σ[vi := vj] :: true〉

C7

v ∼ v ′

〈σ :: {v}⊆{v ′}〉 〈σ :: true〉
C8

v 6∼ v ′

〈σ :: {v}⊆{v ′}〉 〈〉

C9

i , j ∈ {1, 2}; i 6= j ; vi non-extensional set ; v ′

i = homEvi ; v ′

j = vj

〈σ :: {v1}⊆{v2}〉 〈σ :: {v ′

1}⊆{v ′

2}〉

C10

〈σ :: 0⊆ v〉 〈σ :: true〉
C11

〈σ :: {v}⊆ 0〉 〈〉
C12

rename p,x ,φ wrt σ

〈σ :: {v}⊆{p \ x | φ}〉
〈σ :: {v}⊆{p}∧φ〉

C13

〈σ :: v1 ∪ v2 ⊆ v〉
〈σ :: v1 ⊆ v ∧ v2 ⊆ v〉

C14

〈σ :: {v}⊆ v1 ∪ v2 〉
〈σ :: {v}⊆ v1, σ :: {v}⊆ v2〉

C15

σ :: {p \ x | φ}⊆ v σ :: homE{p \ x | φ}⊆ v

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

