
Minimize Mark-Up !

Natural Writing Should Guide the Design of

Textual Modeling Frontends

Markus Lepper, Baltasar Trancón y Widemann, Jacob Wieland

Technische Universität Berlin, Fakultät IV, ÜBB, Sekr. FR 5–13,
Franklinstr. 28/29, D–10587 Berlin, E-mail: {lepper,bt,ugh}@cs.tu-berlin.de

Abstract Designing and implementing modeling frontends for domains
in which text is predominant (it may be informal, semi-formal or for-
mal) can and should benefit from using the evolving standard mark-up
languages (SGML and XML), since standardization of interfaces, trans-
mission and storage protocols as well as many valuable tools

”
come for

free“.
But the idiosyncratics of the existing mark-up concepts neither provide
a structure clean enough to serve as foundation for syntax and semantics
of exact modeling frontends, nor do they offer an input format feasible
for text-based data maintanance.
Direct Document Denotation (DDD) as presented in this paper tries to
remedy these defects: (1) it abstracts from the rough edges of XML, (2)
it realizes a practical frontend processor for denotation of structured doc-
uments with special considerations to disabled users and voice controlled
input, – and (3) is described completely and mathematically precise as
a small system of transformation relations.
The theoretical basics and practical issues of DDD are discussed and a
case study is reported.

Keywords: Data Acquisition, Semi-Formal Data, Accesibility, inter language
working , XML, Document Object Model , DOM, data binding , SCHEMA

1 Introduction and Related Work

In the field of design and implemention of modeling tools there are three rôles
in which XML will become more and more important:

– As underlying data exchange medium:

”
Invisibly“ to the user XML will be a coding standard for interchanging

structured information in a relocatable format between different tools and
different locations.

– As input format :
Using screen mask editors which are configured by DTD or SCHEMA, XML

structured data can be directly acquisited and maintained by domain experts
or less qualified personal.

– As mark-up language :
For shorter texts (e.g. configuration files) XML frontend syntax can be typed
directly.

 markuslepper.eu

 IS
BN 3

-5
40

-4
28

66
-6

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-42866-6

XML DTDYACC

SGML DTD

D2D

D2D

META

DATA

XML

SGML

ANTLR

programming languages
domain specific language design

easy parsing

heavy parsing

easy writing heavy writing

Figure1. Efforts needed for authoring vs. for
parsing

But the last kind of ap-
plication guarantees a maxi-
mum of inconvenience, even
if supported by a syntax con-
troled editor. This is some-
how amazing, since the orig-
inal SGML is intended to be
a mark-up language for au-
thoring purposes. The down-
grading derivation of XML

but aimed solely at simpli-
ficating the computer’s task
of parsing, not the human
task of writing (see figure 1).
While it was easily possible
to write SGML-DTDs which
were not parsable at all , XML

takes the other extreme mak-
ing the instances of all struc-
ture definitions parsable in

LL(1), with the intention to enable the silliest browsers to display cool web
pages with minimum knowledge of modern parsing techniques.

This requirement must lead to the opposite of an elaborated user-friendly
textual input frontend.

The approach presented in this paper is called Direct Document Denotation
(DDD) and tries to close this gap, thus realizing a fourth rôle of XML:

– XML is used as underlying Structure Definition generating a convenient tex-
tual input frontend automatically.

DDD is intendend to be useful in at least two cases: (1) There exists legacy
data which is semi-formally textually coded and shall now be lifted to an exact
and computer processible format with minimum effort, and (2) a textual mod-
eling frontend for a given domain problem has to be created from scratch, and
the designers and developers want to concentrate on semantic issues and get an
input frontend for free.

We estimate DDD to be superiour to mask editors in those cases where (1) the
kind of text data requires more flexibility, e.g. if recursive structure definitions
are dominant, and (2) where the domain experts are strongly used to express
themselves by authoring and are used to the comforts of

”
their“ text editing

tool.

In both these cases a minimal mark-up syntax is beneficial, which follows
the style of natural writing as established by the text gender or domain experts’
tradition as close as possible.

DDD comes with a small definition language which in parallel defines content
models and input syntax. Thus being a further schema definition language –

 markuslepper.eu

 IS
BN 3

-5
40

-4
28

66
-6

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-42866-6

which would be among the things needed least at the moment, cf. [6] – the focus
of its design and of this paper lies on the frontend generating aspect.

As an authoring tool the design of the DDD is inspired by the frontend
behavior of TEX[5], m4 [1], curl [7] and Lout [3], [4], concerning the means of
recognizing the structure of input, e.g. the borders between parameter values,
with minimal typing efforts and minimal

”
visual noise“1.

It is an interesting fact that the most flexible frontend feature of TEX which
allows the free definiton of LL(1) parsers for macro parameters is only used by
very experienced

”
TEXhackers“ and hardly by

”
users“, even not by computer

experts which do extensive programming on LATEX-level. So we decided to limit
the degree of freedom for defining the input parsers, intending to make the
definition of input patterns as well as their usage more transparent.

As a schema definition language DDD is restricted to a required minimum.
It will be part of future work (see section 3 below) to correlate its expressiveness
with other approaches. This should be done using a formal framework as in [8].
That paper of Makoto Murata et.al. is as far as we know the first approach
applying formal methods (i.e. mathematics) to XML. Since it is mainly about
validation of given XML structures it cannot be compared with our work, be-
cause the parser approach of DDD only deals with documents which are

”
correct

by construction“. Nevertheless [8] is an important and inspiring paper in our
context.

2 Description and Specification of DDD

2.1 DDD Principles

DDD is a meta-language for defining and performing transformations of a docu-
ment given as sequence of characters into a tree-like

”
Document Object Model“

(= DOM).
DDD stands for D irect Document Denotation, as the user can directly de-

scribe the tree structure of the document with a minimal count of keystrokes. It
closely follows some fundamental paradigms found in SGML/XML, so that the
resulting DOM is processable by eg. XSLT or other tools built on these stan-
dards, but DDD tries to abstract from all idiosyncratic distinctions made there.
The tree constructed by DDD consists of nodes , which (under certain conditions
of usage, see 2.6) can represent XML

”
ELEMENTs“ as well as their character data

contents as well as
”
ATTRIBUTE“ values.

A concrete DDD system is a collection of parametrized definition modules2.
A module primely defines node classes by declaring their structure (attribute list
and content model) together with a convenient input representation. In addition
a module can provide auxiliary objects like enumerations (used for ATTRIBUTEs of
the appropriate type), macros, character sets etc. Each such definition is referred
to by an identifier which is unique in the scope of the module.

1 The generated output of these tools are DVI, Postscript, HTML or pure ASCII text
resp., therefore the backends are not comparable.

2 The current implementation does not yet support parametrization

 markuslepper.eu

 IS
BN 3

-5
40

-4
28

66
-6

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-42866-6

property EL ATT

Can contain structure. YES no

Can be permutated arbitrarily in frontend syntax no YES

Can be assigned attribute values YES no

Are implicitly typed by their
”
name“; these types are totally unrelated YES no

Can be typed explicitely no YES

Must be typed explicitely no YES

Can have a default value no YES

Class names are unique w.r.t. a
”
module“ YES no

Table1. Properties of ELEMENTs and ATTRIBUTEs in SGML/XML

A module can be defined by referring to other modules via import statements;
node classes are defined by recurring to other (maybe imported) node definitions
or to predefined parser types.

The basic operation of a DDD system is to apply the definition of one single

”
toplevel“ node to a text file. If the text file conforms to this definition, a Doc-

ument Object Model is created, which can then be further processed, either by
accessing it directly via an API or by writing it into a standard XML file3.

2.2 Central Features of DDD

The basic principles of DDD seem to be rather trivial and aim solely at increasing
the orthogonality of XML based object structures, trying to make exact reasoning
and mathematical analysis feasible. But since the definitions try to cover all of
the variants in XML usage, the consequences are not trivial at all.

These principles can be summarized:

– Unification of ELEMENT and ATTRIBUTE.
We assume that the dichotomy ELEMENT and ATTRIBUTE come from an orig-
inal intention to represent

”
object level“ text data and

”
meta level“ anno-

tations. The design flaw is that belonging to the object- or the meta-level
is decided when interpreting data structures, and should not happen on
representation level: E.g. a table definition in – say – microsoft

”
ACCESS“

is
”
meta“ w.r.t. one window and at the same time

”
object“ in another

window.
This dichotomy led to a somehow

”
random“ conjunction of properties

which from the abstract point of view should be freely combinable, see
table 1.
The (uncessarily) arising complexity is depicted nicely by figures 4 and
5 of [2], which still are simplified as in native XML

”
cardinality“ is not a

property of an element type, but of the referring context.

– Inference of almost all closing tags.
The original SGML approach of declaring tags as omittable has turned out
to be unfeasible since the construction of parsers and the parsing itself can
easily become NP-complete. The flaw was that

”
omissibility“ is a property

of the context and can in general not be verified statically.

– Syntax directed automized tagging.

3 In the current prototypical implementation a Xerces DOM is constructed[9], support-
ing the W3C DOM API.

 markuslepper.eu

 IS
BN 3

-5
40

-4
28

66
-6

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-42866-6

– Partial parsing of incomplete, intermediate text versions.
When constructing a text in the

”
flow of authoring“, i.e. writing from the

beginning to the end, many people prefer to work with partially incom-
plete texts, which are completed in later iterations. The DDD semantics
support this method, – text structures not conformant to their correspond-
ing structure definition, but to a prefix thereof, are accepted and tagged
accordingly, either im- or explicitly.

Basically the DDD approach realizes a two-staged transformation :
On top level, with coarse granularity, there is an explicit tagging. For the

sake of accessibility by the handicapped user – as one of the authors is –
this level (1) uses only one single escape character, which (2) can be redefined
for sake of maximal convenience in typing, and (3) can easily be mapped to
voice input . The character data between (or

”
below“) these top-level tags will

mostly be copied opaquely into the contents of a leaf node of the node tree under
construction.

Alternatively there can be a further,
”
finer“ processing by a simple user-

defined, token-based parser , generating at the lower level an implicit , syntax
directed tagging.

The parser definition facility is intentionally rather limited. Its purpose is to
define the analysing of small syntactic phaenomena appearing in everyday
applications, as calendar dates, personal names and adresses, bible citations,
short formulae etc. If parsing is required in a larger scale a different approach
as in [11] is appropriate.

This two-staged approach leads to the fact, that in practice much expressive
power is reached by the cooperation of rather small structures from both levels.
This yields several advantages:

– Implementation can be done straight-forward. Since the structures tend to
be rather small, all non-determinism/backtracking is strictly localized, thus
performance is not really an issue.

– All interpretation of user input is exactly localized; error diagnosis and re-
covery is much less difficult to automize.

– Research on compositionality, reusability, refinement and extendability be-
comes feasible in practice.

In the following we give (1) an operational description of the semantics of the
tagging level and (2) a function based denotation of the semantics of both levels
in DDD. The former is more suited to the user, the latter allowing reasoning and
supporting correct implementation.

2.3 DDD Case Study

A first DDD case study was performed in 2000 ([12]). Exctracts from the sources
are given in appendix A to illustrate the following descriptions. They construct
an XML page as service for protestant sacral musicians, listing all sundays and
observances of the year 2000 of the German Protestant Church (= EKD) together
with the related bible texts, which again are related to cantatas and motets,

 markuslepper.eu

 IS
BN 3

-5
40

-4
28

66
-6

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-42866-6

which on their part have been set to notes by different composers, requiring
different ensembles of choir and solo voices4. The reader is asked to refer to these
examples when reading the following specifications. We assume these sources –
while based on German terms – nevertheless to be self-explanatory.

The data type definition modules (last example in appendix A) had of course
been created by the developers, together with one prototypical data file for each
toplevel node.

But the completion and maintenance of all DDD data file sources had suc-
cessfully been done by total laymen/laywomen in the field of programming or
even data acquisition.

2.4 Operational Semantics of the Explicit Tagging Level

When explaining the semantics of DDD to such a layman, who is e.g. a typist
used to construct textual documents

”
from left to right“, an operational model

of semantics seems adequate, which analyzes the text in the same direction. In
future such an interpreter could be implemented as integral part of a syntax
driven editor.

Roughly spoken: Whenever this interpreter starts its basic evaluation cylce,
the name of a (currently visible) node class must be found at its current input
pointer5. Then a new node of the given class is constructed and inserted into
the tree built so far at the lowest possible position (as seen from the point of the
last preceding insertion). Only if no such position exists, an error is thrown and
the input is rejected.

This implements the feature of
”
inference of closing tags“, which is central

for supporting Natural Writing.
All currently growing nodes the contents of which are

”
complete“ w.r.t. their

contents’ spefication are closed implicitly, – all those with incomplete content are
marked as such and closed as well, iff the interpreter runs in a mode permitting
incomplete documents. Otherwise an error is thrown.

This behavior allows handling of temporarily incomplete documents, and is
also of main importance for Natural Writing.

If the contents’ definition of the new node requests text data, then all input
characters up to (but excluding) the next escape character are copied into the
contents of this node. This text is typed as normal plain text, as the person
doing the acquisition is used to do. After discarding the escape character the
basic cycle is entered again.

Furthermore explicit closing tags are supported, too, in which case the au-
tomized closing inference is carried out up to the lowest node of the class re-
quested for closing. A variant of the closing tag called

”
break tag“ permits the

user to mark a node’s content as incomplete explicitly.

4 These special pages have by now disappeared from the webside for business reasons,
but all other informative pages there are instances of DDD as well.

5 Additionally there are a few built-in commands for controlling the interpreters be-
havior, which can also appear at these positions and can be considered as removed
from the text after their successful execution.

 markuslepper.eu

 IS
BN 3

-5
40

-4
28

66
-6

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-42866-6

Node : (Ident × seq Nodes) ∪ ({$text} × seq CHAR) → Nodes
P ∈ Parsers

i, iN , iP , iE ∈ Ident
UPCDATA = seq CHAR

κ ∈ UPCDATA
j, k, m ∈ N

eN = iN | iP
| eN eN | eN"|" eN | eN "+" | eN "*" | eN j "..*" | eN j ".."k | "(" eN ")"

eP = "#ident" | "#numeric" | "#string" c | . . . | #like iP | iP | "[" i eP "]"

| eP eP | eP"|" eP | eP "+" | eP "*" | eP j "..*" | eP j ".."k | "(" eP ")"
ˆ̂ ˜̃

N ,
ˆ̂ ˜̃

N+,
ˆ̂ ˜̃

N− : eN → (UPCDATA → seq Nodes)
ˆ̂ ˜̃

P : eP → (UPCDATA → seq (Nodes ∪ CHAR))
ˆ̂ ˜̃

X : (eP ∪ eN) → (UPCDATA → seq Nodes)

Figure2. Basic Types and Notations

ˆ̂

’"’ const ’"’
˜̃

P = {〈"const"〉 7→ 〈"const"〉}
ˆ̂

#numeric
˜̃

P = {"0" 7→ "0", "1" 7→ "1", . . .}
ˆ̂

#ident
˜̃

P = {"a" 7→ "a", "aa" 7→ "aa", . . .}
ˆ̂

#string c
˜̃

P = { κ _ 〈c〉 7→ κ | κ ∈ seq (CHAR \ {c}) }
ˆ̂

#escape
˜̃

P = {"#" 7→ "#"}
ˆ̂

#select from iE
˜̃

P = {ident0a 7→ "0", ident0b 7→ "0", ident1a 7→ "1", . . .}
. . .

� ∈ {N, P, X}
ˆ̂

e1 e2

˜̃

� =
ˆ̂

e1

˜̃

�
_
×

ˆ̂

e2

˜̃

�

A
_
× B = λ((a, b), (c, d)) • a_c 7→ b_d (|A × B|)

ˆ̂

e1 "|"e2

˜̃

� =
ˆ̂

e1

˜̃

� ∪
ˆ̂

e2

˜̃

�

ˆ̂

e "?"
˜̃

� =
ˆ̂

e
˜̃

� ∪ {〈〉 7→ 〈〉}
ˆ̂

e "*"
˜̃

� =
ˆ̂

e 0..*
˜̃

�

ˆ̂

e "+"
˜̃

� =
ˆ̂

e 1..*
˜̃

�

ˆ̂

e j ".." "*"
˜̃

� =
ˆ̂ ˜̃

�(|{〈e1, . . . , em〉 | j ≤ m,e = e}|)
ˆ̂

e j ".." k
˜̃

� =
ˆ̂ ˜̃

�(|{〈e1, . . . , em〉 | j ≤ m ≤ k, e = e}|)

ˆ̂

"(" e1 "|" . . . "|" em ")" "!"
˜̃

N =
ˆ̂ ˜̃

N (|permutations {e1, . . . , em}|)

Figure3. Extended Regular Expressions, generic for both Levels of Parsing

2.5 Denotational Semantics

The semantics of a mark-up language like DDD can be seen as a syntactic trans-
formation. For this it is not too hard to give an exact specification, which can
be found in figures 2 to 7. As notation we use a weak variant of a small subset
of the Z notation, since the Z toolkit [10] provides exact definitions and handy
conventions for a kind of

”
common sense“ set based mathematics, which in most

 markuslepper.eu

 IS
BN 3

-5
40

-4
28

66
-6

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-42866-6

ˆ̂

"∼"
˜̃

N = 〈〉 7→ 〈〉
def node i as parser : eP "."

=⇒
ˆ̂

i
˜̃

N = λ(a, b) • 〈i〉_a 7→ (Node(i, filter b)) (|
ˆ̂

eP

˜̃

P |)
∧

ˆ̂

i
˜̃

P =
ˆ̂

[i e]
˜̃

P

∧
ˆ̂

#like i
˜̃

P =
ˆ̂

e
˜̃

P

ˆ̂

"[" i e "]"
˜̃

P = λ(a, b) • a 7→ (Node(i, filter b)) (|
ˆ̂

e
˜̃

P |)

filter α =

(

α if ran α ∩ Nodes = {}

squash (α . Nodes) otherwise

def node i as empty "."

=⇒
ˆ̂

i
˜̃

N = 〈i〉 7→ 〈Node(i, 〈〉)〉
def node i as plain text "."

=⇒
ˆ̂

i
˜̃

N = λ(a, b) • 〈i〉_a 7→ 〈Node(i, b)〉 (|
ˆ̂

#string "#"
˜̃

P |)
def node i as grammar : eN "."

=⇒
ˆ̂

i
˜̃

N = λ(a, b) • 〈i〉_a 7→ 〈Node(i, b)〉 (|
ˆ̂

eN

˜̃

N |)
def node i as mixed : i1, . . . , ik "."

=⇒
ˆ̂

i
˜̃

N = λ(a, b) • 〈i〉_a 7→ 〈Node(i, b)〉
(|

ˆ̂

[$text #string "#"] ("∼" [$text #string "#"] | i1 | . . . | ik) ∗
˜̃

X |)

mixembed(a, b, i) = {a 7→ b} ∪ { a_κ_〈"#"〉 7→ b_〈Node($text , κ)〉
| ¬∃κ′, κ′′ • κ = κ′_κ′′ ∧ κ_κ′ ∈ dom

ˆ̂

i
˜̃

∧ a.(#a) 6= "#" ∧ "#" 6∈ κ }
ˆ̂

i
˜̃

X = λ(a, b) • mixembed(a, b, i) (|
ˆ̂

i
˜̃

N ∪
ˆ̂

i
˜̃

P |)

ˆ̂

i
˜̃

N+ =
ˆ̂

i
˜̃

N ∪ λ((a, b), c, d) • a_c_d 7→ b (|
ˆ̂

i
˜̃

N × {〈"/", i〉, 〈〉} × seq {"#"}|)

Figure4. Semantics of the Node and Parser Definition Statements

parse+/− : Ident × UPCDATA → Nodes

parse+/− (i, κ) = µ ((〈i〉_κ) /
ˆ̂

i
˜̃

N+/−)

Figure5. Applying the top-level parsing function to a text

parts is readable without further explanation. Some notations special to Z are
explained in appendix B6.

The Document Object Model is defined as a Node, which is a free type either
with an identifier as constructor and a sequence of Nodes as data, or with the
special reserved identifier $text as constructor and a character sequence as data.

Basic paradigm is to define parsing functions of type seq CHAR → Node.
The semantic function

[[]]

P assigns such a parsing function to the predefined

primitive parsers as well as to the names of user defined parsers,
[[]]

N+ and
[[]]

N− do the same on the upper level of node class names, the former forbidding,
the latter allowing incomplete documents.

6 Furthermore we use some self explaining slight extensions to the original Z notation,
eg. using mere juxtaposition of elements for building singleton lists and concatena-
tions :

ˆ̂

i α x
˜̃

is an abbreviated notation for
ˆ̂

〈i〉 _ α _ 〈x〉
˜̃

.

 markuslepper.eu

 IS
BN 3

-5
40

-4
28

66
-6

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-42866-6

κ ∈ UPCDATA
def node i0 as plain text .

def parser p

q = p ∨ q = 〈#like, p〉

def node i as complex :

plain prefix : i0 ";"

grammar : eN ";"

=⇒
ˆ̂

i
˜̃

N = λ(a, b) • 〈i〉_κ_〈"#"〉_a 7→ Node(i, Node(i0, κ)_b) (|
ˆ̂

eN

˜̃

N |)

def node i as complex :

plain prefix : #content ";"

grammar : eN ";"

=⇒
ˆ̂

i
˜̃

N = λ(a, b) • 〈i〉_κ_〈"#"〉_a 7→ Node(i, Node($text , κ)_b) (|
ˆ̂

eN

˜̃

N |)

def node i as complex :

plain prefix : q ";"

grammar : eN ";"

=⇒
ˆ̂

i
˜̃

N = λ((a, b), (c, d)) • 〈i〉_a_c 7→ Node(i, b_d) (|
ˆ̂

q
˜̃

N ×
ˆ̂

eN

˜̃

|)

def node i as complex :

grammar : eN ";"

mixed with chars : i1 "," . . . "," ik ";"

=⇒
ˆ̂

i
˜̃

N = λ((a, b), (c, d) • 〈i〉_a_c 7→ 〈Node(i, b_d)〉
(|

ˆ̂

eN

˜̃

N ×
ˆ̂

[$text #string "#"] ("∼" [$text #string "#"] | i1| . . . |ik) ∗
˜̃

X |)

def i as complex :

β1

once: a1 ,.., ak;

optional: b1 ,.., bl;

grammar: γ ;

β2

==

def i as complex :

β1

grammar : (a1| . . . |ak | b1?| . . . |bl?) ! γ ;

β2

Figure6. Semantics of
”
Complex“ Node Definitions

The semi-formal notation in figure 4 using
”
=⇒“ shows how a syntactic con-

struct in a definition module defining a new node or parser induces the semantic
function

[[]]

P/N+/N− for the newly defined identifier by combining other parsing
functions.

Aim of the game is to define a parsing function for the top-level node of the
document, which is applied to the text as a whole as seen in figure 57.

The reader who considers these definitions somewhat complicated may be
assured that the given formulae completely describe the DDD transformation
framework, and that they can easily be lifted to a fully formal specification.

Please compare this specification to the 200 pages of plain english description
of XML.

7 Function application is written as finding the only element (by using
”
µ“) of a domain

restriction.

 markuslepper.eu

 IS
BN 3

-5
40

-4
28

66
-6

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-42866-6

Ai,κ = {α | ∃κ′ •
ˆ̂

i
˜̃

N (〈i〉_κ_κ′) = α}
pretrees : seq Nodes → P seq Nodes

pretrees(Node($text, κ)) = { Node($text, κ) }
pretrees(Node(i, α)) = { Node(i, α) }

∪ { Node(i, α′) | l = # α′ ∧ ∀k ∈ 1 . . . (l − 1) • α.k = α′.k

∧ α′.l ∈ pretrees α.l }

markinc : Nodes × Ident → Nodes
markinc(Node(i, α_〈n〉), j) = Node(i, α_〈markinc(n, j)〉_〈Node($incomplete, j)〉)

αi,κ = µ (
T

pretrees(|Ai,κ|))
ˆ̂

i
˜̃

N− =
ˆ̂

i
˜̃

N+ ∪ {∀κ|κ 6∈
ˆ̂

i
˜̃

∧ Ai,κ 6= {} • 〈i〉_κ 7→ markinc(αi,κ, i) }
∪ {∀κ|Ai,κ 6= {} • 〈i〉_κ_〈"///", i〉 7→ markinc(αi,κ, i) }

Figure7. Semantics of Incomplete Node Denotations

2.6 Additional Information in Definition Modules

The grammar of DDD definition modules is (of course ;-) a self-application
and provides firstly the basic defining statements for node classes, the semantics
of which are depicted in figure 4 and have been discussed above. Furthermore
there are additional modifier s which can be applied to each single node class
definition8.

The most important of these is the modification attribute xmlrep, which
determines the encoding when writing out the internal document tree to an
external XML file or when masquerading as W3C DOM. Hairy context conditions
are checked by the existing implementation to ensure feasibility: a node declared
as ATTRIBUTE must not appear more than once in the language of the grammar
of any node, a node used for plain prefix in a complex definition must be of
flavour parser or plain text, and so must be each node with xmlrep equal to
CDATA, etc.

To minimize the count of required constructs there is no special means for
defining abstract grammars. Instead there is a

”
#like Ident“ construct which

makes the pure grammar definition of a node class accessible, – speaking with
[8] it shortens a production in P to its corresponding content model, which is a
production in P2.

2.7 Extendability and Refinement

The seperation into two layers of transformation yields localization and thereby
supports stepwise refinement of transformation definitions.

In a project where a new text format is defined from scratch, new node classes
can be defined and alternatives can incrementally be added to some contents
grammar, as soon as necessity arises (see future work below, 3).

In a project of tagging existing legacy semi-formal text data in a first ap-
proach only the explicit, coarse tagging can be defined and inserted into the text.

8 The modifier grammar is meant as user-extendable. There are modifiers foreseen to
support connection to a type system, to configure a syntax controlled editor etc.

 markuslepper.eu

 IS
BN 3

-5
40

-4
28

66
-6

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-42866-6

As soon as a more structured access turns out to be necessary, parser definitions
can be added, requiring re-editing only of these parts which do not yet confirm
to the new grammar.

In our case study (appendix A) there was no parser provided for the
”
plain

text header“ of "psalm", "lesung" etc., which was stored as plain text in a node
class element "quelle". To give finer control of correctness of the input we can
add . . .

def public enum books mos = 0, mosis = 0,

gen = 1, genesis = 1,

ex = 2, exodus = 2,

lev = 3, leviticus = 3,

....

apoc = 666 .

def enum subverse a,b,c,d,e,f,g,h .

def public parser cites cite (";" cite) * .

def public parser cite #numeric ? #select from books

pericope ("," pericope)* .

def parser pericope #numeric ?

#numeric (#select from subverse)?

("-" #numeric (#select from subverse)?)? .

"cites" now accepts input like
2 mos 1 14- 16, 18, 2 1 ; apoc 1 12 - 14

which is linked to the existing definition by
def quelle like cites .

"cites" delivers all correctly parsed character substrings as a whole simply
as plain text. If one wants a structured node representation the names of the
subnodes have to be provided in brackets "[]" :

def public parser cite [booknumber #numeric]? [book #select from books]

pericope

("," pericope)* .

def parser pericope [chapter #numeric] ?

[firstverse #numeric (#select from subverse)?]

("-" [lastverse #numeric (#select from subverse)?])? .

3 Conclusion and Future Work

Direct Document Denotation, DDD, a modular system for generic definition of
transformations from a slightly mark-uped text document into an XML confor-
mant document object model has been presented. Its semantics are described
formally, – with some weakening for sake of readability.

A prototypical implementation has been successfully applied to enable non-
professionals doing data acquisition and maintanance of text oriented, semi-
structured data.

While this seems a promising start (with much work still to do on the engi-
neering side) there are still open questions on the research side: How can DDD

 markuslepper.eu

 IS
BN 3

-5
40

-4
28

66
-6

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-42866-6

parser definitions be converted into into sensible XML schema definitions auto-
matically? – How far can a DDD frontend definition be derived from an XML

schema automatically? – How can a given XML document be converted into DDD

format? – Of what practical use would it be to introduce
”
offside rule“ in the

input format? – And how can this be formalized? –
The most interesting research concerns

”
evolving schemata“: Since, as ex-

plained above, DDD is intended for gradual refinement of tagging and parsing of
legacy data

”
on demand“, the rules ensuring compositionality of definition mod-

ules have to be explored, thereby bringing together established and new results
in parser theory and data base theory.

4 Acknowledgements

We owe special thanks and respect to our dear colleagues Wolfgang Grieskamp

(now at microsoft research), Michael Cebulla and Peter Pepper, the head
of the ÜBB team. Without the intensive and exciting discussions on their results,
our problems and the common visions this paper could not have been written.

References

1. Free Software Foundation, http://www.seindal.dk/rene/gnu/man/. m4 Manual.
2. Gerti Kappel, Elisabeth Kapsammer, Stefan Rausch-Schott, and Werner Rets-

chitzegger. X-ray – toward integrating xml and realational database systems. In
Conceptual Modeling – ER 2000. Springer LNCS 1920, 2000.

3. Jeffrey H. Kingston. A New Approach in Document Formatting.
http://snark.ptc.spbu.ru/~uwe/lout/overview.ps.gz, 1992.

4. Jeffrey H. Kingston. The Lout Homepage.
http://snark.ptc.spbu.ru/~uwe/lout/lout.html, 2000.

5. Donald E. Knuth. The TEXbook. Addison-Wesley, 1987.
6. Dongwon Lee and Wesley W.Chu. Comparative analysis of six xml schema lan-

guages. ACM SIGMOD record, 29(3), 2000.
7. MIT Laboratory for Computer Science, http://curl.lcs.mit.edu/curl/wwwpaper.html.

curl.
8. Makoto Murata, Dongwon Lee, and Murali Mani. Taxonomy of xml

schema languages using formal language theory. In Extreme Markup Lan-
guages, http://www.cobase.cs.ucla.edu/tech-docs/dongwon/mura0619.ps, au-
gust 2001.

9. Apache XML Project. Xerces Java Parser. Apache Software Foundation,
http://xml.apache.org/xerces-j.

10. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

11. Baltasar Trancon y Wideman, Markus Lepper, Jacob Wieland, and Peter Pepper.
Automized generation of abstract syntax trees represented as typed dom xml. In
Proceedings of the ICSE 2001 First International Workshop on XML Technologies
and Software Engineering (XSE’01), 2001.

12. Zacharias Musikversand, http://www.kirchennoten.de. DDD Generated Web
Pages, 2000.

 markuslepper.eu

 IS
BN 3

-5
40

-4
28

66
-6

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-42866-6

A Examples Extracted From the Case Study Sources.
Source Text 1

1 . . . #d2d text using musicaSacra : annusLiturgicus_EKD ;

2 . . .
3 . . . tag Karfreitag #datum 21. April 2000 #

4 . . .
5 . . . wochenspruch Joh 3,16 #~

6 . . . Also hat Gott ## die Welt geliebt, #nl

7 . . . daß er seinen eingeborenen Sohn gab, #nl

8 . . . damit alle, die an ihn glauben, nicht verloren werden, #nl

9 . . . sondern das ewige Leben haben.#

10 . .
11 . . werk Motette "Also hat Gott die Welt geliebt"#

12 . . vertonung Schütz #vox 5 #

13 . . vertonung Hufschmidt #vox Soli S+T + 4 #

14 . .
15 . . psalm LV I Phil 2, 8; LV II Phil 2, 10, 8b #

16 . . werk Motette "Ecce homo" #

17 . . vertonung Reda #vox 4

18 . . #bemerkung Frühes Werk, nicht einfach,

19 . . #spitzenton T = a’, #spitzenton S = a’’

20 . . #

21 . . eof

Ende of Source

Source Text 2
1 . . . <?xml version="1.0" encoding="ISO-8859-1"?>

2 . . . <celebrationdays>
3 . . . <tag datum=" 21. April 2000 " name=" Karfreitag ">

4 . . . <wochenspruch quelle=" Joh 3,16"> Also hat Gott # die Welt

5 . . . geliebt, <nl/> daß er seinen eingeborenen Sohn gab,<nl/>

6 . . . damit alle, die an ihn glauben, nicht verloren werden,<nl/>

7 . . . sondern das ewige Leben haben.

8 . . . <werk> Motette "Also hat Gott die Welt geliebt"

9 . . . <vertonung composer=" Schütz " voices=" 5 "/>

10 . . <vertonung composer=" Hufschmidt " voices=" Soli S+T + 4 "/>

11 . . </werk>

12 . . </wochenspruch>

13 . . <psalm> LV I Phil 2, 8; LV II Phil 2, 10, 8b;

14 . . <werk> Motette "Ecce homo"

15 . . <vertonung composer=" Reda " voices=" 4 ">

16 . . <bemerkung> Früher Reda, nicht einfach,

17 . . <spitzenton voice="T" pitch=" a’ "/>,

18 . . <spitzenton voice="S" pitch=" a’’ "/>

19 . . </bemerkung>

20 . . </vertonung>

21 . . </werk></psalm></tag>

22 . .</celebrationdays>
Ende of Source

 markuslepper.eu

 IS
BN 3

-5
40

-4
28

66
-6

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-42866-6

Source Text 3
1 . . . #d2d module musicaSacra ; import richtext ;

2 . . . def public node annusLiturgicus_EKD as list of tag+ ; xmlrep = el celebrationDays .

3 . . . def node tag as complex :

4 . . . plain prefix : (def name; xmlrep att) ;

5 . . . once : (def datum; xmlrep att),

6 . . . wochenspruch ;

7 . . . optional : psalm, graduale, lesung, epistel, halleluja,

8 . . . evangelium, predigt .

9 . . . def node wochenspruch as complex :

10 . . plain prefix : quelle ;

11 . . mixed with chars : #from richtext:rtf copy #all .

12 . .def node psalm as complex :

13 . . plain prefix : quelle ;

14 . . grammar : werk * .

15 . .use type of psalm for graduale, lesung, epistel, halleluja,

16 . . evangelium, predigt .

17 . .def node werk as complex : plain prefix : #content ;

18 . . grammar : vertonung + .

19 . .def node vertonung as complex :

20 . . plain prefix : (def composer ; xmlrep = att) ;

21 . . once : (def vox ; xmlrep = att voices) ;

22 . . optional : (def bemerkung as mixed with chars :

23 . . #from richtext:rtf copy #all ,

24 . . spitzenton, (def schwer as empty)).

25 . .def node spitzenton as parser [voice #ident] "=" [pitch #ident] .

26 . .eof
Ende of Source

B Some Special Symbols and Constructs in Z

R (| A |) = the set containing the results of applying relation R to all elements
of the set A.

A / R =
”
domain restriction“ = the relation identical to R, but containing

only those pairs the left element of which is in the set A.
R . B =

”
range restriction“ = the relation identical to R, but containing

only those pairs the right element of which is in the set B.
µ A = the only element contained in the set A. If A does not contain

exactly one element, this expression is undefined .
A = the cardinality of any set A.
a 7→ b =just syntactic sugar for (a, b).
seq A = the set of all sequences of elements of A. Each S ∈ seqA is a finite

mapping N+ → A, where there are no
”
holes“ in the domain, i.e. S

is defined for all n with 1 < n < # S .
S1

_S2 = the concatenation of two sequences.
S.k = the kth element of S. Only defined if 1 < k < #S.
squash S = if S is of type N+ → A, then squash A is the sequence made by

”
compactifying“ S by

”
shifting left“ all elements right to a

”
hole“.

 markuslepper.eu

 IS
BN 3

-5
40

-4
28

66
-6

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-42866-6

