
XML-based Acquisition of Fine-Granular

Structured Data by Grammar Morphisms

Markus Lepper, Baltasar Trancón y Widemann, Jacob Wieland

Technische Universität Berlin, Fakultät IV, Institut für Softwaretechnik und
Theoretische Informatik, ÜBB, Sekr. FR 5–13,

Franklinstr. 28/29, D–10587 Berlin, E-mail: {lepper,bt,ugh}@cs.tu-berlin.de

Abstract The DDD language and tool is a textual front-end for com-
fortable authoring XML documents and acquisition of structured but
flexible data, esp. suited for legacy problems.
DDD has a two-layered architecture: The upper layer contains explicit
mark-up for ergonomic data input, characterized by single-character-
escaping and tag inference. In contrast the lower layer does not use
mark-up, but parser definitions by extended regular expressions, which
implicitly construct the data model from every-days textual representa-
tion of structured entities like addresses, names, domain specific notions
etc.
The algorithms for transforming the front-end grammar defining terms
into abstract data definitions and then into XML DTD definitions are
given, as well as the algorithm for the parser. All algorithms are based
on term rewriting.

Keywords: Data Acquisition, Semi-Formal Data, Accessibility, inter language
working , XML, Document Object Model , DTD generation, SCHEMA

1 Goals, Contexts and Related Work

1.1 Goals of the DDD Research and Tool Project

The work presented herein is part of the DDD project [8]. DDD aims at making
legacy text corpora as well as new out-comings of traditional text editing and
authoring techniques accessible for automated text processing. This is achieved
by adding the minimum of necessary mark-up, thereby presenting the text as

”
semi-structured data“ to automated processing, while at the same time keeping

it readable and writable by humans.
The upper layer of DDD uses explicit tagging, characterized by (1) one single

escape character and (2) context dependent tag inference, — two rather simple
principles yielding astonishingly complex mathematical consequences, cf. [8].

#adressbook

#entry ugh #name Wieland, Jacob #phone +49 30 / 314 -23456

#adress TU Berlin, FR 5-30

#entry bt ...

which is translated into a structure like

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

<adressbook:entry adressbook:id="ugh">

<name>Wieland, Jacob</name>

<phone>+49 30 / 413 -23456 /phone>

<adress> TU Berlin, FR 5-30</adress>

</adressbook:entry>

<adressbook:entry> ...

The definition of the structures are given as terms of a small declaration
language (synchronously generating the inference rules for parsing and a data
model), which then is mapped to an XML DTD in a canonical way, but behaves
itself somehow more orthogonal than the latter.

So, w.r.t. data acquisition and derivation of data-base meta-models, only one
single text-meta-model (given anyhow, as DDD schema or DTD or XML schema)
is given, and there is ongoing research by others dealing with transformations,
consistency conditions, derivations etc. between these two, cf. [?],[?].

1.2 The Parser Layer of DDD

The parser from foregoing example, using only explicit tagging, delivered the

”
phone number“ just as an unstructured string of characters. This can hardly

be called
”
data acquisition“. On the other hand we do not want to tag such fine-

granular data explicitly. It seems neither economic nor convenient to be forced
to write this like

#phone #country 49 #city 30 #main 314 #extension 45678

Fine granular data in semi-formal documents is traditionally represented by
relatively small text fragments which follow a certain grammar, like personal
names, postal addresses, calendar dates, citations, domain specific abbreviations
etc. Our proposal is, to re-model the grammar of the existing every-day’s en-
coding as a formal language, — also to make legacy documents treatable with
least effort1.

The syntax of these constructs is in most cases regular , that is neither
context-dependent nor even requiring recursive definitions, — nevertheless we
provide means for recursive definition, which indeed will require most of the
calculation effort.

Using standard regular expressions (plus a set of arbitrary given
”
Scanners“)

we can write a definition like . . .

phonenumber = ("+" #decDigit #decDigit) (#decDigit +)

"/" (#decDigit +) ("-" (#decDigit +))?

1 These grammars are in many cases highly dependent of the cultural context of
the data’s origin. One hypothesis back-grounding the DDD project is that the re-
modeling of these traditionally grown grammars as exact expressions of a formal
language maybe serve as analyzation technique w.r.t. the underlying structure of
the denotated data itself, which may also be culturally determined.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

The resulting parser will match the phone number from the example above.
One central design goal of DDD is to avoid the necessity of redundant def-

initions, and concentrate all necessary declarations as much as possible. So we
extend the front-end grammar defining regular expressions by a means for spec-
ifying where to put the matched character data for a given sub-expression.

The top-level data model is that of objects (or
”
Elements“), to which

”
some

data content“ is linked to associations , which are indexed by names. This names
are called

”
Tags“ in the following, — and will mostly indeed be mapped to XML

”
Tags“.

The type of the data delivered by applying a tag name to the association
belonging to some source object is defined with the definition of this

”
source“

object’s type.
This data type can be just another element type, i.e. a singleton set containing

one of the elements of this element type, or may be a bag of such objects, or a
sequence, or even a sequence containing objects of different types.

Following the principle of
”
least points of declaration“, we enhance the no-

tation for defining the front-end syntax by a means for prescribing the tag , the
corresponding data structure to which will receive the matched content.

In our example we can prescribe these target tags of the matched character
data by writing . . .

phonenumber = ("+" [Country #decDigit #decDigit])? [Area #decDigit +]

"/" [Main #decDigit +] ("-" [Extension #decDigit +])?

What this really means,
”
putting“ the parsed character data into a data

object identified by the given tags, depends on the data type of the element/tag
combination, the inference of which is the main topic of this paper.

1.3 Data Model Derivation

But now the picture w.r.t. data modeling is more complex than in the tagged
layer described above, because now three declarations have to be synchronized:
(1) The grammar of the front-end, (2) the mathematical data model, and (3)
the XML encoding.

It has to be analyzed, how the explicitely given tag indications together with
the implicit behavior of the grammar (which cannot be easily overlooked even
by a skilled user) can be mapped to a single mathematical data model.

This model has to be as fine-granular as necessary, but also as abstract as
possible. The latter, because it is mostly not feasible to store all information of
the front-end representation in a data base system efficiently, — generally it is
not even desirable to do so, because the meant data content shall of course be
realized independently from the accidentally chosen front-end representation.

In the example above, one can infer that there are tags Country, Area, etc.,
which all point to one single

”
character data“ object each. Consider e.g. one

wants to encode more than one extension, which can easily achieved by just
replacing a ? by an * :

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

phonenumber = ("+" [Country #decDigit #decDigit])? [Area #decDigit +]

"/" [Main #decDigit +] ("-" [Extension #decDigit +])*

The mathematical model inferable from this definition is now just a bag of
numbers, — but if the order of these numbers shall carry semantics, we have to
derive a sequences . This fact must of course be indicated by the author of the
data model, using a further keyword:

phonenumber = ("+" [Country #decDigit #decDigit])? [Area #decDigit +]

"/" [Main #decDigit +]

(#ORD "-" [Extension #decDigit +])*)

This declaration will generate an ordered list of extension numbers.
More complex declarations can be written using non-terminals, or defining

tag contents explicitly. Both methods can be mixed freely, as shown in . . .

phonenumber = country ? Area "/" main (#ORD extension *)

country = "+" [Country #decDigit #decDigit]

[Area] = #decDigit +

main = [Main #decDigit +]

extension = "-" [Extension #decDigit +]

2 Construction of Meta-Models and Transformations

2.1 Grammar Definition

The starting definitions of our front-end representation shall be given as a module
M.

First we construct a set of identifiers T which will be used as
”
Tag“ values,

which may occur in the derived data model, and a set N of names of
”
non-

terminals“ used for defining the front-end grammar. Further shall there be a set
of predefined (or maybe user-defined)

”
scanners“, which later will be used to

consume the front-end character data, thus representing the
”
terminals“ of our

grammars2.
All sets shall be disjoint3, and no identifier of the former sets may start with

some given
”
reserved“ character, for which we chose the

”
#“.

T : F Ident
N : F Ident
Scan : F Ident

disjoint 〈N,T ,Scan 〉
∀ t ∈ (N ∪ T) • t .1 6= #

2 The topic of user-defined scanner generation, and the related problems of white-
space-preservation, mixed content generation etc. are not treated in this paper.

3 We will use Z notation in the following, slightly enhanced (e.g. by type sums) and
slightly weakened for sake of readability.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

The set of
”
Extended Regular Expressions“ is now given by the free type

definition:

X ::= X :: X | X|X | X* | X+ | X? | #Perm(N NX . . . N NX)

| [T X] | #ORD X | Scan

Scan == #Ident | #ident | #Int | #Float | "stringConstant"
| Enum | . . .

Our
”
extended“ RegExps firstly behave just normal regular expressions: In

the first line :: means sequencing (indicated as mere juxtaposition in standard
Regexp, or e.g. as a comma-operator

”
,“ in XML-DTD), | means alternative,

and also *,+, ? have their standard meaning4.
Please note that our XRegExps need not to be

”
un-ambiguous“ nor their

languages
”
LL(1)“. The semantics we give to XRegExps (cf. the implementation

of the parser in section 3) resolve ambiguity by applying the principle of longest
prefix match w.r.t. the whole XRegExp. For instance, when p has the following
definition

p = (a a (a|b) (a|b) | a a) (b b b b b)?

// a a b b b b b ccc

// a a b b bbbccc

then matching of aabbbbbbccc against p will chose the shorter prefix for match-
ing the first

”
()“, as indicated in the first comment line, because the overall

match will be longer.
Additionally we have three

”
interfaces“ for controlling the data-flow, two

”
up-

ward“ and one
”
from below“: The notation [t x] means that the content which

(when parsing some text input) afterwards will be recognized as an expansion
of α, shall be assigned as content to an element with the tag value t .

The central feature (#ORD x) is used to indicate explicitely that the order of
the content carries some semantics.

Finally the call of a scanning function s ∈ Scan is used to control the final
parsing process of the input character data.

Then a definition module is given as a function

M : Module = (T ∪ N) → X

2.2 Term Transformation

For manipulating the definition module we first define a basic rewriting function
for XRegexp, which is given in figure 1. This function can be used for actually
rewriting a term, or just for collecting information. As given in the figure, visit

4 The #Perm operator is intended to make some evaluation structures directly usable
in the front-end declaration language and is not treated in this paper.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Figure1 Visitor Function for XRegexp

RewriteXRegexp[τ]

visit : τ ×X → τ ×X
// should be: visit [β] : τ × β ×X → τ × β ×X
// visit = visit []

x : X , π : τ, n : N, t : T , l : (N ∪ T) 7→ N × N

visitπ t = π, t
visitπ n = π,n
visitπ [t x] = (visitπ x).1, [t (visitπ x).2]

visitπ #ORD x = (visitπ x).1, #ORD (visitπ x).2
visitπ x * = (visitπ x).1, (visitπ x).2 *

visitπ x + = (visitπ x).1, (visitπ x).2 +

visitπ x ? = (visitπ x).1, (visitπ x).2 ?

visitπ x1 x2 = (visitπ′x2).1, (visitπ x1).2 :: (visitπ′ x2).2
visitπ x1 | x2 = (visitπ′x2).1, (visitπ x1).2 | (visitπ′ x2).2

where π′ == (visitπ x1).1

is just a complicated way of writing the identity function. Derivations from this
visitor are made by instantiating it with the types of the accumulator parameters,
and overriding the function definitions, where all non-overridden methods are

”
inherited“ from figure 1, e.g. the cases of the function definition are treated like

”
methods“ in an OO-context5.

E.g. the function
”
flat“ collects all values occurring at the leaves of an XReg-

exp and shows the typical and convenient way of working with
”
functionally

encapsulated pseudo side-effects“:

flat : X → P(N ∪ T)
flat (x) = RewriteXRegexp [P(N ∪ T)].visit

⊕

(visitS (t : T) = S ∪ {t}

visitS (n : N) = S ∪ {n}

) ({}, x) .1

2.3 Normalization of Order-Respecting Directives

First step of the transformation of a given module m ∈ M is to remove all
#ORD constructors, keeping in each branch only the top-level ones. This is done

5 For convenience we only give one single definition of a multi-purpose visitor. When
either the accumulator parameters or the rewriting facility is not used in the fol-
lowing, we simply omit the corresponding parameters and results from the notation
informally.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

by applying normOrder to all those x ∈ X which appear on the right side of
definitions in m.

Since the #ORD constructor creates an order-respecting area which shall dis-
tribute even over the contents of all enclosed non-terminals, we capture this fact
by doubling the set of non-terminals and their definitions, to be used in ordered
and un-ordered contexts resp.

No = {n ∈ N • no }
M1 = M ∪ {n 7→ x ∈ M • no 7→ elimOrd(x) }
normOrder, elimOrder : X → X
normOrder = RewriteXRegexp [].visit
⊕

(visit (#ORD x) = #ORD(elimOrder(x))

)

elimOrder = RewriteXRegexp [].visit
⊕

(visit #ORD x = x
visit (n : N) = no
visit [t α] | α 6∈ ran #ORD = [t (#ORD visit(α))]

)

From here on we simply write N, meaning N ∪ No.

2.4 Extraction of In-Line Content Models

Now, as the
”
ordered“ information is pushed down into the XRegExp, we can

extract and collect all definitions for element content, which are written
”
in-line“

inside an XRegExp:
exCD1 = RewriteXRegexp [T ×X].visit

⊕

(visit⊥,⊥ [t α] = t , α, CALL(t)
visitt,α x = t , α, x

)

exCD2 : Module → Module

exCD2(M) =















M ⊕ (ti 7→ ci) ⊕ (to 7→ co)
if ∃ to ∈ (N ∪ T)

• exCD1(⊥,⊥,M [to]) = (ti , ci , co) ∧ ti 6= ⊥
M otherwise















extractContentDefs : Module→ Module

extractContentDefs = Y exCD2

From here on we assume that M2 = extractContentDefs(M1), and simply
write M for M2.

2.4.1 Example With the last both steps a definition module like . . .

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

[C] = b b [C #ORD b (#int | (#ORD b*))]

b = #int [C #int] | (#ORD #ident *)

. . . is transformed to . . .

[C] = b b [C #ORD bo (#int | (b*))]

b = #int [C #int] | (#ORD #ident *)

bo = #int [C #int] | (#ident *)

. . . and then the content definition for C are extracted .

[C] = b b C

| #ORD b (#int | (bo*))

| #int

b = #int C | (#ORD #ident *)

bo = #int C | (#ident *)

2.5 Abstracting Grammars to Cardinalities

The next steps do the abstraction from regular expressions to just counting the possible
occurrences of Tags and Nonterminals: What we do is building a kind of

”
disjunctive

normal forms“: For each given XRegExp (which is bound to the declaration of an tag
or nonterminal) we consider all possible

”
paths“.

Since only net
”
effects“ are considered, and order must be discharged, we switch

now to modeling these normal forms as
”
sets“6.

The algorithm is given in figures 2 and 3. We model every
”
path“ through an

XRegExp, i.e. every term of our virtual disjunctive normal form, as a pair of two sets,
representing the ordered and unordered occurrences, resp., each given the minimal and
the maximal count.

In a first step the constructors ?, + and * are resolved. Then all paths in which
recursion occurs are lifted to

”
infinity“, and all XRegExp where a

”
power recursion“

occurs, (or at least two distinct simple recursions in one same path!), are lifted to

”
infinity“ for their whole content.

Then all nonterminals are replaced by there summarized net content recursively,
and at last all paths for a given Nonterminal/Tag are summarized.

2.6 Possible Data-Base Content Models

Now we have indeed a function

SumFin : (T ∪ N) → (((T ∪ Parse) → (N × N)) × ((T ∪ Parse) → (N × N)))

giving for any Tag value (t ∈ T) or any Non-Terminal (n ∈ N) the minimal
and maximal multiplicity, in which a given parser or tag reference may occur in valid
contents of n or t . This is given for

”
ordered“ and

”
unordered“ occurrences separately.

6 Please note that using
”
sets“ is just a simplified way of writing term transforma-

tions, e.g. modulo a certain permutation order. All data (
”
sets“ and

”
relations“)

are given by construction, and all evaluation can always be done symbolically by
transformations.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Figure2 Collecting net effects per path

effect = T 7→ (N × N)
effects = effect × effect
// repr. ORDered and UNORDered .

combine : effects × effects × (effects → effects)2 → effects
combine(e1, e2, φ1, φ2)

= dom e2 −C e1 ∪ dom e1 −C e2

∪ (λ x • x 7→ ((φ1(e1(x).1, e2(x).1), φ2(e1(x).2, e2(x).2))
(| dom e1 ∩ dom e2 |)

], � : effects × effects → effects
↑, ↓ : effects → effects
∗̂, ↓ : effects × N × N → effects
e1] e2 = combine(e1, e2, (+), (+))
e1 � e2 = combine(e1, e2, (min), (max))
e ↑ = (λ x • x 7→ (e(x).1,∞)) (| dom e |)
e ↓ = (λ x • x 7→ (0, e(x).2)) (| dom e |)
e ∗̂(a, b) = (λ x • x 7→ (e(x).1 ∗ a, e(x).2 ∗ b)) (| dom e |)

effs, recEffs, finEffs : X → P effects
effs (n : N) = {({}, {n 7→ (1, 1)})}
effs (t : T) = {({}, {t 7→ (1, 1)})}
effs (x|y) = λ a, b • ((a.1 � b.1), (a.2 � b.2)) (|effs x × effs y |)
effs (x :: y) = λ a, b • ((a.1] b.1), (a.2] b.2)) (|effs x × effs y |)
effs (x?) = ↓ (|effs x |)
effs (x+) = ↑ (|effs x |)
effs (x*) = ↓ (| ↑ (| effs x |) |) = effs((x+)?)
effs (#ORDx) = (λ s • (s.2, {}) (| effs x |)
// bec. of normalization there is only UNORDered content below
// — shift it to ordered content !

usesMulti,usesOnce, uses : effect ↔ N
usesMulti = {(e, t) | (e.1)(b).2 > 1 ∨ (e.2)(b).2 > 1 }
usesOnce = {(e, t) | (e.1)(b).2 = 1 ∨ (e.2)(b).2 = 1

∧ ¬ usesMulti(a, b)}
uses = usesOnce ∪ usesMulti

calls, callsDirectMulti,callsDirectOnce,inCircleWith
: N ↔ N

callsDirect = {(a, b) | ∃ e ∈ effs M[a] • uses(e, b)}
calls = (callsDirect)∗

callsDirectMultiple = {(a, b) | ∃ e ∈ effs M[a]
•usesMulti(e, b)
∨ (uses(e, b) ∧ ∃m ∈ N | m 6= b • e(m).1.2 + e(m).2.2 > 0 ∧ m calls a)

}

callsDirectSingle = callsDirect \ callsDirectMultiple
callsMultiple = {(a, d) | ∃ b, c : N • (a calls b ∨ a = b)

∧ (b callsDirectMultiple c)
∧ (c calls d ∨ c = d)

isMultiRec : PN
= {n : N | n callsMultiple n }

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Figure3 Collecting net effects per path (continued)

recEffs(n) =



(effs n) ↑ if isMultiRec(n)
(λ x • calcRec(n, x ,M)) (| effs(M[n]) |) otherwise

ff

calcRec : N × effect × Module → effect

calcRec(n, e,M) =



e ↑ if ∃ n ′ ∈ M • e uses n ′ ∧ n ′ calls n
e otherwise

ff

sumEff, sumFin : N → effect
sumEff(n) = collEff(recEffs M[n])
// accumulate effect of the alternatives !
collEff : effects → effect
collEff ({e0} ∪ e) = e0 � collEffs(e)
collEff ({}) = ({}, {})

sumFin(n) = Y collFin({n}, sumEff M[n])
// replace nonterminals by terminal content.
collFin : effect × P N → effect

collFin(e, S) =

8

<

:

({m} −C e)] (collFin(M[m], S ∪ {m}) ∗̂(a.b))
if ∃m : N • m 7→ (a, b) ∈ e ∧ m 6∈ S

e otherwise

9

=

;

From this data we can derive the abstract definitions of the data model, which is
appropriate for storing the parsed data according to the user’s prescriptions:

O U

0 0 1 1 b : ∆ → T —�1
—T maybeXML− ATT

0 0 0 1 n : ∆ → OPT T —�0..1

—T maybeXML− ATT

0 0 a b > 1 n : ∆ → BAG T N —�1
— T

= 1 1
> 1 1 // May be discussed.

a > 1 b > 1 Error (
”
Automated Derivation Fails“)

≥ 1 0 0

let ordererSubs = dom (sumFin(n).1)
m =] ordererSubs

m = 1 n : ∆ → SEQ T N —1�— T
m > 1 n : ∆ → SEQ (UNION(orderedSubs)) N —1�— (N × (T1∧∪T2∧∪ . . .))

The situation that there is one single
”
unordered“ and more than one

”
ordered“

occurences of the same sub-grammar may be very common. Consider e.g. the follow-
ing parser, representing two possible ways of writing personal names taken from the
cultural sphere of German language:

PersName = [Vorname #Ident][Nachname #ORD #Ident (#ident|#Ident)*]

| [Nachname #ORD #Ident (#ident|#Ident)*]

"," [Vorname #ORD #Ident +]

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

This imposes no real problems, as a single occurence can alwas be considered to be

”
ordered“.

2.7 XML Content Models

For automated transformation we define an XML DTD to be represented as a term of
the grammar given by moduleX :

moduleX ::= XmlDef | moduleX :: XmlDef
XmlDef ::= ELX (T ,Xgr) | ATTX (T , Ident , {REQUIRED, IMPLIED})
Xgr ::= T | Xgr ”, ” Xgr | Xgr | Xgr | Xgr ? | Xgr + | Xgr * | εX

εX is needed for technical reasons and is neutral w.r.t. sequencing, e.g.

x”, ”εX = εX”, ”x = x

. The transformation from effects to moduleX is given in figure 4.

3 The Parsing Process

Parsing is realized as parallel breadth-first match, implemented again by transformation
of terms, or set of terms, resp.:

The following formulae expect some globally given character data,
”
visible“ only

on Scanner level. Requests to and results from such scanners are represented by only
the

”
position information“ p ∈ Z.

The function parseResult, when called with a XRegExp from our normalized module
(together with the starting position), will transform the definition term into the solution
term. This term is element of the language given by

matched ::= [t matched] | SN×N | matched :: matched

it contains only references to scanners for which matching character data has been
found (which is annotated as two position values), and tag constructors, which group
the contained data as representing one element.

This structure can one-to-one be translated to an XML document, and fulfills all
properties of the mathematical data model derived before.

3.1 A Simple Meta-Model for XML

Now we can give an exact definition of a well-formed XML term, (which can represent
a well-formed document or fragment)[4]. Our definition has the additional property of
disjointness of the both sets of names used for attributes (

”
Attribute name“) and for

elements (
”
Tags“) resp.. We indicate this by choosing the name

”
xWellformed“

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Figure4 Deriving XML DTD content models

[[]]X : module → moduleX

collXml : P T → moduleX

collXD : T → moduleX

collCounter : T × N × N∞ → moduleX

[[M]]X = collXml(domM ∩ T)
collXml (t ∪ tR) = collXD(t , sumFin(n), εX , εX , εX) :: collXml(tR)
collXml ({}) = εX

collXD(t , (SO , {}, {}, α, β, γ)
= ELX (t , (β ”, ” (γ)*)) :: α

collXD(t , (SO , {a 7→ (1, 1)} ∪ SU , α, β, γ)

=

8

>

>

<

>

>

:

collXD(SO , SU , α :: ATTX (n, a, REQUIRED), β, γ)
if(mayBeAtt a) ∧ (userWantsAtt a)

collXD(SO , SU , α, β ”, ” a, γ)
otherwise

9

>

>

=

>

>

;

collXD(t , (SO , {a 7→ (0, 1)} ∪ SU , α, β, γ)

=

8

>

>

<

>

>

:

collXD(SO , SU , α :: ATTX (n, a, IMPLIED), β, γ)
if(mayBeAtt a) ∧ (userWantsAtt a)

collXD(SO , SU , α, β ”, ” (a?), γ)
otherwise

9

>

>

=

>

>

;

collXD(t , (SO , {n 7→ (a, b > 1)} ∪ SU , α, β, γ)
= collXD(t , SO , SU , α, β ”, ” (collCounter(n, a, b)), γ)

collXD(t , ({a 7→ (, n > 1)} ∪ SO , SU , α, β, γ)
= collXD(t , SO , SU , α, β, (γ ”, ” a))

collCounter (n, a > 0, b) = n ”, ” (collCounter(n, a − 1, b − 1))
collCounter (n, 0, b 6= ∞) = (n ”, ” (collCounter(n, 0, b − 1))?

collCounter (n, 0, 0) = εX

collCounter (n, 0,∞) = n *

Xml xWellformed Term[TE ,TA,C]

#self
def
= Xml xWellformed Term[TE , TA,C]

tag : TE

atts : TA 7→ C

cont : seq (#self ∪ C)

TE ∪ TA ⊂ T

TE ∩ TA = ∅

.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-

sups : F #self

= {e : #self | ∃ n : N • e.cont .n = θ#self }

// weaker: | θ#self ∈ ran (e.cont)

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Figure5 The Parsing Algorithm

N⊥ = N ∪ {⊥}
scan : Scan × N → N⊥ × N

X̂ ::= X | sN×N | ε

where ε :: α = α :: ε = α

parse1 : X × N → P(X̂ × N)

parse1(s : Scan) =



{ sa,b} if a 6= ⊥
{} otherwise

ff

where (a, b) = scan(s, p)
parse1(x|y), p = parse1(x , p) ∪ parse1(y , p)
parse1(x :: α), p = (λ µ, ν • µ :: parse1(ν, α)) (|parse1(x , p)|)
parse1(x?) = parse1(x , p) ∪ {(ε, p)}
parse1(x+) = parse1(x :: (x*), p)
parse1(x*) = parse1((x+)?, p)
parse1(n : N , p) = parse1(M[n], p)
parse1(t : T , p) = [t parse1(M[t], p)]

maxParse(x , p) = {(a, b) ∈ parse1(x , p) | ¬ ∃(a ′, b′) ∈ parse1 • b′ > b }
parseResult(x , p) = RANDOMCHOICE maxParse(x , p)

Standard XML only deals with finite terms7 , given like . . .

7 By the way, a rather different thing is an XML document
”
object“ representation,

which can be described as . . .

Xml xWellformed Object [TE ,TA,C , I]

Xml xWellformed Finite Term[TE ,TA,C]

#self
def
= Xml xWellformed Object [TE ,TA,C , I]

id : I

∀ o1, o2 : #self • o1.id = o2.id ⇒ o1 = o2

∧ (o1.cont ∩ o2.cont 6= ∅) ⇒ o1 = o2

.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-

sup : #self ∪ {#topmost}

= µ ({1 7→ #topmost }

⊕ (λ e • 1 7→ e) (|sups|) // = {1} × subs

) (1)
θ#self 6∈ ran (.sup)∗

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Xml xWellformed Finite Term[TE ,TA,C]

Xml xWellformed Term[TE ,TA,C]

// One possible rule for prohibiting circularity :

θ#self 6∈ ran (.cont)∗

.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-

θ#self 6∈ ran (.sups)∗

The transformation of the data acquired by the parsing process (given in the lan-
guage

”
matched“) into such an XML term is straight-forward and mainly has to do the

re-ordering of all
”
unordered“ elements according to the order in the derived DTD.

4 Related and Future Work

4.1 Grammars in Data Base research

The are numerous approaches in data base research dealing with grammars and gram-
mar transformations. This is not astonishing, if one considers grammar transformations
to be an abstractions of graph transformations, which is common place in data-base
theory.

The work presented herein differs (to the best of our knowledge) from all existing
work, as our focus is on front-end generation, integrated with schema definition, and
on the problems which arise when two independently existing grammars (front-end and
data definition) interfere.

The closest relation is to the works about automated derivations of schemas (con-
ceptual or physical) from grammars (or attributed grammars, or XML DTDs), and
vice versa, as in [15], [14], [5], [9], [7].

Only on the level of methodology there are (rather tight) relations to those ap-
proaches which use grammar morphism for transforming the data of semi-structured
objects, as in [1] and [10], — for processing of queries, the usage of XML for present-
ing views and query results, and automated derivation of a corresponding DTD, as
in [13], [12], — for model unification, as in [6], — and to all those approaches which
propose a formal definition of SGML, XML (or semi-structured data in general) as a
mathematical sound calculus, like [2] and [11].

An interesting survey on semi-structured data and XML is given in [16].
Furthermore there are common areas with computer linguistics, because the prob-

lem of different structural organization of front-end syntax and
”
data syntax“ is a

central topic there, cf. e.g. [3].

4.2 Future Work

The principle of
”
single point of definition“, as applied in the architecture presented

herein, suits well for local definitions of small grammars for
”
details“.

It does indeed conflict with principled of compositionality , e.g. when using one
single front-end definition with different (e.g. legacy) data definitions.

While keeping the in-lined tag definitions as an option, we need some means for
combining front-end grammars with separately existing data schemas and/or XML
schemas.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

The other possible kinds of derivation (front-end grammars from DTDs or data
base schemas) may also turnout to be useful.

Further basic research in these both areas seems promising.

References

1. An Feng An and Toshiro Wakayama. SIMON: A grammar-based transformation
system for structured documents. In Fifth International Conference on Electronic
Publishing, pages 361–372, Darmstadt, Germany, 1994. Origination, Dissemination,
and Design (EPODD) EP ’94.

2. Chutiporn Anutariya, Vilas Wuwongse, Ekawit Nantajeewarawat, and Kiyoshi
Akama. Towards a foundation for XML document databases. In EC-Web, pages
324–333, 2000.

3. Rens Bod and Ronald Kaplan. A data-oriented parsing model for lexical-functional
grammar.

4. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensi-
ble Markup Language (XML) 1.0 (Second Edition). W3C Recommendation,
http://www.w3.org/TR/2000/REC-xml.

5. Ronaldo dos Santos Mello and Carlos Alberto Heuser. A rule-based conversion of
a dtd to a conceptual schema, November 2001.

6. Marc Gyssens, Jan Paredaens, and Dirk van Gucht. A grammar based approach to-
wards unifying hierarchical data models. SIAM Journal on Computing, 23(6):1093–
1137, 1994.

7. Gerti Kappel, Elisabeth Kapsammer, Stefan Rausch-Schott, and Werner Rets-
chitzegger. X-ray – toward integrating xml and realational database systems. In
Conceptual Modeling – ER 2000. Springer LNCS 1920, 2000.

8. Markus Lepper, Baltasar Trancon y Widemann, and Jacob Wieland. Minimze
mark-up ! – natural writing should guide the design of textual modeling frontends.
In Conceptual Modeling — ER2001, volume 2224 of LNCS. Springer, November
2001.

9. Dongwon Lee Murali Mani and Richard R. Muntz. Semantic data modeling using
xml schemas, November 2001.

10. Makoto Murata. Transformation of documents and schemas by patterns and con-
textual conditions. In PODP, pages 153–169, 1996.

11. Makoto Murata, Dongwon Lee, and Murali Mani. Taxonomy of xml
schema languages using formal language theory. In Extreme Markup Lan-
guages, http://www.cobase.cs.ucla.edu/tech-docs/dongwon/mura0619.ps, au-
gust 2001.

12. Frank Neven and Jan Van den Bussche. Expressiveness of structured document
query languages based on attribute grammars. In PODS ’98. Proceedings of the sev-
enteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, pages 11–17. ACM press, 1998.

13. Yannis Papakonstantinou and Victor Vianu. DTD inference for views of XML
data. In Symposium on Principles of Database Systems, pages 35–46, 2000.

14. Patricia Rodriguez-Gianolli and John Mylopoulos. A semantic appproach to xml-
based data integration, November 2001.

15. Airi Salminen and Frank Wm. Tompa. Grammars++ for modelling information
in text. Information Systems, 24(1):1–24, 1999.

16. Dan Suciu. Semistructured data and XML. In FODO, pages 0–, 1998.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

