
tSig: Towards Semantics for a
Functional Synchronous Signal Language

(Extended Abstract)

Baltasar Trancón y Widemann1,2 and Markus Lepper2

1 University of Bayreuth
2 <semantics/> GmbH

1 Introduction

Functional programming arguably has some of the most powerful mechanisms for
abstraction and reuse of program fragments, namely strong and user-definable
data types in terms of categorical constructions such as product and coproduct
for statical abstraction, and polymorphic higher-order functions for operational
abstraction. A well-typed term in a functional language is an extremely concise
and mathematically handy notation for data flow compared to, say, a circuit
diagram, no matter whether defined visually or algebraically.

However, these abstractions are conspicuously absent from traditional lan-
guages for synchronous signals, where both input and output are functions of
discrete time: For apparently historical reasons, primitive numeric data types,
first-order weakly-typed operations and verbose data flow diagrams are the state-
of-the-art style of expression. From a software-engineering perspective of produc-
tive and safe programming, signal languages also tend to lack features such as
high-level state for control flow, exception handling, support for algebraic data
types and symbolic computation, and associated declarative notations such as
pattern matching. Cf. [?,?,?].

Here, we describe tSig, the prototype of a language designed to explicitly ad-
dress many of the above shortcomings. In contrast to the current trend of func-
tional reactive programming, we desist from constructing an embedded domain-
specific language (cf. [?]), for various reasons: Firstly, we intend to perform
substantial static analysis on the language that is probably beyond the power of
the static (type) checker of a host language. Secondly, the intended user com-
munity of tSig does not consist of functional programming experts, hence the
diagnostics given by language tools must state the detected problems directly,
not encoded into the type system of a host language. Lastly, tSig is intended to
be executed on a number of technologically very diverse platforms, depending
on the context of application, from real-time audio to simulation of ecosystem
behaviour.

 markuslepper.eu

 IS
SN 1

43
8-

39
85

http://markuslepper.eu
http://www.worldcat.org/search?q=1438-3985

2 Basic Design

The key idea of tSig is to have coexisting and fully compositional notations for
terms and circuit-like data flow, such that the programmer may freely choose ei-
ther idiom for any computational task. Diagrams are more expressive concerning
the shape of data flow, but they do not scale well to more complex programs.
The transition between the two perspectives can be understood as a matter
of syntactic discipline: Consider a pure term language in the sense of classical,
timeless functional programming. If the language has a let-construct for local
bindings, then an internal canonical form, the so-called A-normal form can be
defined. It binds every subterm to a local name, such that every expression is of
the form let (y1, . . . , yn) = f(x1, . . . , xm) in z, where z is either a bound variable
or in A-normal form again. This can be seen as an algebraic notation for a data
flow diagram, where f transduces input channels x1, . . . , xm to output channels
y1, . . . , yn in a context z. The resulting data flow diagram is an acyclic graph
for non-recursive let. Arbitrary finite graphs could be encoded with recursive let,
but their interpretation requires fixpoint semantics and has rather complicated
properties. Hence we do not currently consider cyclic data flow; see section 3.2
below.

In a data flow diagram, the individual components can easily be reinter-
preted from one-shot computations to stream transducers, thus implementing
discrete-time signals. tSig gives such signal semantics to arbitrarily complex
nested terms, in a way compatible with the stream interpretation of their A-
normal forms. Assuming that signals may have different frequencies, classical
functional programming can be retrieved as the pathological case of frequency
zero.

3 Semantic Categories

3.1 Signal Processing with Stream Functions

Historically, there are three important semantic characterizations of stream func-
tions: Firstly, causal stream functions f : Aω → Bω where infinite streams
are used holistically as input and output, but the output element at a par-
ticular instant in time may only depend on current and past, but never on
future, input elements. Secondly, functions in the style of functional reactive
programming where every input element is mapped to a pair of an output ele-
ment and a continuation function, as expressed by the recursive type equation
A

?→ B = A → B × (A ?→ B). Lastly, the state-based or coinductive style
where the elementwise mapping of input element to output elements is cou-
pled with a state transition, as expressed in the non-recursive type equation
A

S→ B = S × A → B × S. (The switched positions of state and I/O are
deliberate and a convenient convention, see below.) We shall follow the latter
approach, because it is most closely related to low-level implementations, requir-
ing only first-order iteration (loops with variables of non-function types) for its
operational semantics.

 markuslepper.eu

 IS
SN 1

43
8-

39
85

http://markuslepper.eu
http://www.worldcat.org/search?q=1438-3985

A stream function can be implemented in tSig if it is specified by a construc-
tive elementwise step function of type A

S→ B built from a suitable algebra of
basic step operations. The obvious downside of the state-based approach, namely
that, for each stream function, the state space and initial state must be given
in addition to the elementwise step, is mitigated by the very same algebra: We
postulate that the relevant class of stream functions can be specified by two
classes of atomic steps, namely stateless computations and elementary delay,
together with synchronous composition of stream functions. Stateless computa-
tions are embedded into the setting as having unit state S = 1 = {∗}, such that
the initial state is determined trivially. Hence the type signature of a stateless
lifting of an elementwise function f : A → B has the type signature fω : A

1→ B
and the defining equation fω(∗, a) = (f(a), ∗). Elementary delay δ (for a single
step in time) is specified by the polymorphic type signature δA : A

A→ A and
the defining equation δA = id(A×A). (Note how the switching of state and I/O

positions is exploited.) The synchronous composition of steps f : A
S→ B and

g : B
Q→ C has the type signature g � f : A

S×Q→ C and the defining equation
(g�f)((s, q), a) = (c, (s′, q′)) where (b, s′) = f(s, a) and (c, q′) = g(q, b). It is easy
to show that the stream function specified by the step g � f and the initial state
(s, q) is equivalent to the composition of the stream functions specified by steps
g and f with initial states s and q, respectively. With synchronous composition
and (elementwise) product, arbitrarily complex terms of stream functions may
be constructed from the atomic steps. Note that, in accordance with section 2
above, general recursion is not allowed, hence functions may be required to be
total.

3.2 Coproducts

(Cartesian) products as a structuring device are ubiquitous even in the most
primitive data-flow language designs. By contrast, the dual notion of coproducts
(disjoint unions) is far less well-established, although it plays a certain role in
functional programming. A wide variety of design concepts can be reduced to
coproducts: algebraic datatypes (as a coproduct of constructor cases), exception
handling (as the Kleisli category of a coproduct monad), finite automata as
a large-scale device of control flow, and last but not least the transformation
known as defunctionalisation, which maps higher-order to first-order functional
programs by replacing each function-type argument with an ad-hoc algebraic
datatype, and its use with a local interpreter.

We conjecture that the general tendency in language design to privilege prod-
ucts over coproducts results in negative effects from a software-engineering per-
spective, namely in premature encoding, an analog to the infamous premature
optimization. It denotes the tendency to misrepresent structures that are logi-
cally disjunctive in nature, and hence naturally represented by coproducts, by
a conjunctive approximation that can be represented by products. This asym-
metry is acerbated by product-centric machine-level similes, such as a bus of
independent channels, or a set of random-access memory cells.

 markuslepper.eu

 IS
SN 1

43
8-

39
85

http://markuslepper.eu
http://www.worldcat.org/search?q=1438-3985

A simple but effective countermeasure against product dominance is the firm
integration of case distinctions based on pattern matching into a language. Since
pattern matching naturally specifies partial functions, a variety of implicit se-
mantics for systems of pattern-based partial function equations have been pro-
posed, such as first-fit and best-fit rules. tSig takes a rigorous and explicit ap-
proach by distinguishing total and partial function expressions as different syn-
tactic and semantic categories. Partial expressions arise from the use of pattern
matching and are combined by a small set of meta-logical operators, namely &
(intersection), | (disjoint union, commutative but with proof obligation) and /
(overriding union, non-commutative). The transition to the total domain is syn-
tactically explicit and carries a proof obligation. The fact that pattern matching
may fail dynamically for certain inputs is reflected in the semantics of tSig by
assigning a guard, that is, a formal expression that doubles as the static speci-
fication of a subset (of a coproduct type) and a runtime test, to each matching
operation. Failure propagates across meta-logical operators and is reflected in the
propagation of guards to logically connected operations, in the logically obvious
way.

In the absence of recursion, partial expressions can be given simple seman-
tics in the style of the relational algebra of database theory: Each operation (of
the form let (y1, . . . , yn) = f(x1, . . . , xm) in an A-normal form term) is assigned
a potentially infinite table with columns (attributes) x1, . . . , xm, y1, . . . , yn and
a functional dependency of the y-rows on the x-rows. Total (stream) functions
are represented by their extension (treating I/O and state variables the same),
runtime tests on subsets by partial identity relations. Then &, | and / can be
represented by the relational operations on (join), ∪̇ (disjoint union) and ⊕ (over-
ride), respectively.

It is easy to show that synchronous composition is a special case of relational
join, and that the semantic representations are compositionally well-behaved
under a reasonable set of assumptions on the structure of data flow: The join
of a finite set of functional relations is well-defined and functional if the data
flow graph is cycle-free. (There is an edge in the data flow graph between two
operations f and g if an output of f coincides with an input of g). Furthermore,
the guard of the aggregate is the intersection of individual guards if outputs are
pairwise disjoint.

In terms of circuit diagrams, these assumptions mean precisely that instan-
taneous feedback is forbidden, and that output channels may not be connected
to each other. However, feedback with delay is an important design pattern
and should be supported. This is achieved by splitting a delay operation into
two independent operations, namely an identity between pre-state and output,
and another identity between input and post-state. This way, delayed feedback
does not appear as cycles in the data flow graph. From the functional term
perspective, general recursion is not allowed, but there are certain apparently
recursive equations that translate to delayed feedback, and hence are acceptable.
We conjecture that general recursion is not needed for typical signal processing

 markuslepper.eu

 IS
SN 1

43
8-

39
85

http://markuslepper.eu
http://www.worldcat.org/search?q=1438-3985

applications, to the effect that the infamous problems caused by fully recursive
calculi of computation can be safely ignored here.

3.3 Mutual embedding

The free composition of the partial and the total world can now be formalized
by a pair of mutual semantical embeddings. A total (stream) function trans-
lates trivially to relational semantics by takign its extension and forgetting the
different roles of I/O and state variables. On the other hand, a partial expres-
sion with relational semantics can be abstracted as a total function, given that
several conditions hold: All inputs are bound to funciton arguments or interme-
diate outputs; all results have total guards; the above conditions for join hold;
all postulated disjointness of unions it witnessed by guards.

4 Conclusion

Apparently all existing technical solutions for signal generation and real-time
signal processing include at least one paradigm break, normally between a “con-
figuration” and a “signal” layer of the system architecture, where the semantic
model changes as well as the language syntax. The reasons are historical as well
as social: Most existing systems are quite old, and their authors merely dabbled
in the field of language design and compiler construction. [?,?,?]. But even newer
and more professional approaches have similarly fundamental gaps [?,?].

In contrast, tSig proposes a monolithic approach: Functions, given by terms
denoting both configuration and basic signal calculation operations, and data
flow networks, given as circuit descriptions, are embedded compositionally into a
uniform, semantically rigorous calculus. The effective implementation of tSig re-
quires that the expressions of this compound language be iteratively normalized,
and advanced techniques of functional program transformation (defunctionali-
sation, pattern matching) be applied. We hope that the resulting programming
system will allow domain experts to concentrate on modeling the specific do-
main problems, in areas as diverse as live electronic music and simulation of
environmental processes, being relieved from the burden of manually translating
the intended logic signal flow into some technical encoding.

The authors are confident that the tSig approach will carry far. We are look-
ing forward to practical experience on its concrete limitations, and to insights
whether need arises to add expressivity to the framework, and how to do it.

References

1. The Csound Manual (2005), http://csounds.com/manual/html/indexframes.

html

2. Pure Data Homepage (2011), http://puredata.info/docs
3. Nilsson, H., Courtney, A.: Yampa (2008), http://hackage.haskell.org/package/

Yampa

 markuslepper.eu

 IS
SN 1

43
8-

39
85

http://markuslepper.eu
http://www.worldcat.org/search?q=1438-3985

4. Orlarey, Y., Gräf, A., Kersten, S.: DSP programming with Faust, Q and SuperCol-
lider. In: LAC2006 (2006), http://lac.zkm.de/2006/papers/lac2006_orlarey\
_et_al.pdf

5. Wilson, S., Cottle, D., Collins, N.: The Supercollider Book. The MIT Press (2011),
http://supercolliderbook.net

 markuslepper.eu

 IS
SN 1

43
8-

39
85

http://markuslepper.eu
http://www.worldcat.org/search?q=1438-3985

