
Encoding Temporal Logics in Executable Z:

A Case Study for the ZETA System

Wolfgang Grieskamp and Markus Lepper

Technische Universität Berlin, FB13, Institut für Kommunikations- und
Softwaretechnik, Sekr. 5–13, Franklinstr. 28/29, D–10587 Berlin, E-mail:

{wg,lepper}@cs.tu-berlin.de

Abstract. The ZETA system is a Z-based tool environment for devel-
oping formal specifications. It contains a component for executing the Z
language based on the implementation technique of concurrent constraint
resolution. In this paper, we present a case-study for the environment,
by providing an executable encoding of temporal interval logics in the Z
language. As an application of this setting, test-case evaluation of trace-
producing systems on the base of a formal requirements specifications is
envisaged.

1 Introduction

The ZETA system [2] is a tool environment for developing formal specifications
based on the Z notation [10]. It contains a component for executing the Z lan-
guage, using a computation model of concurrent constraint resolution, described
in [5]. A wide range of Z’s logic can be executed within this approach, integrating
the power of higher-order functional and logic computation.

In this paper, we present a case study of the system. We develop an executable
encoding of discrete temporal interval logics (in the style of Moszkowski’s logic,
[8]), and illustrate it by animation in the ZETA system. The example demon-
strates the interplay of logical search and of higher-orderness, the last one allow-
ing us to build abstractions by passing predicates (generally represented as sets
in Z) to functions and storing them in data values.

As an application of our encoding of temporal logics we briefly look at test-

case evaluation for safety-critical embedded systems. Given a formal require-
ments specification which uses temporal logics, some input data describing a
test case, and the output data from a run of the system’s implementation on the
given input, we check by executing the specification whether the implementation
meets its requirements. This application stems from the context of a research
project funded by Daimler-Chrysler.

This paper is organized as follows. In Sec. 2, we introduce the basic features of
executing Z in the ZETA system. In Sec. 3 we develop the encoding of temporal
logics, and describe the application to test-case evaluation, where we use the
example of an elevator controller. In Sec. 4 we give a conclusion, discussing the
results and related work.

 markuslepper.eu

 IS
BN 3

-5
40

-4
12

85
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-41285-9

Fig. 1 ZETA’s Graphical User Interface After Executing an Expression

2 Executing Z under ZETA

In [4, 5] a computation model based on concurrent constraint resolution has been
developed for Z. A high-performance virtual machine has been derived, which is
implemented as a component of the ZETA system. In this implementation, all
idioms of Z which are related to functional and logic programming languages are
executable. Below, we look at some examples to illustrate the basic features. We
assume some knowledge of Z (see e.g. [10]; the Z implemented by ZETA actually
confirms to the forthcoming Z ISO Standard [14], which, however, does not make
a significant difference in our application).

As sets are paradigmatic for the specification level of Z, they are for the
execution level. Set objects – relations or functions – are eventually defined
by (recursive) equations, as in the following example, where we define natural
numbers as a free type, addition on these numbers and an order relation:

N ::= Z | S 〈〈{x : N }〉〉 three == S (S (S Z))

add : P((N × N) × N)

add = {y : N • (Z , y) 7→ y} ∪ {x , y , z : N | (x , y) 7→ z ∈ add • (S x , y) 7→ S z}

less == {x , y : N | (∃ t : N • (x ,S t) 7→ y ∈ add)}

A few remarks on the syntax. With ::= a free type is introduced in Z. The
declaration form n == E declares and defines a (non-recursive) name simul-
taneously. The form x 7→ y is just an alternative notation for (x , y). A set-
comprehension in Z, {x : T | P • E}, describes the values E such that P holds

 markuslepper.eu

 IS
BN 3

-5
40

-4
12

85
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-41285-9

for the possible assignments of x ; if the • is omitted (as in the definition for
less , where the • actually belongs to the existential quantor), the set of tu-
ples of the assignments to the variables in the declaration part is denoted (thus
{x , y : T | P} = {x , y : T | P • (x , y)}).

We may now execute under ZETA queries such as the following, where we
ask for the pair of sets less and greater than three:

({x : N | x less three}, {x : N | three less x})

−→ ({Z,S(Z),S(S(Z))},{S(S(S(S(t~))))})

The query as it is entered into the ZETA GUI is visualized in Fig. 1. In the
sequel, however, we will use a conceptual notation as above.

As the result of the query, we get the pair of the numbers less than and
greater than three, where the second value of the resulting pair is a singleton set
containing the free variable t~ (the ~ results from internal variable renaming).
These capabilities are obviously similar to logic programming. In fact, we can give
a translation from any clause-based system to a system of recursive set-equations
in the style given for add , where we collect all clauses for the same relational
symbol into a union of set-comprehensions, and map literals R(e1, . . . , en) to
membership tests (e1, . . . , en) ∈ R.

The functional paradigm comes into play as follows. A binary relation R can
be applied, written as R e, which is syntactic sugar for the expression µ y : X |
(e, y) ∈ R. This expression is defined iff their exists a unique y such that the
constraint is satisfied; it then delivers this y . The set add is a binary relation
(since it is member of the set P((N ×N)×N)), and therefore we can for example
evaluate add(three, three) V S(S(S(S(S(S(Z)))))).

Note the semantic difference of (e, y) ∈ R and y = R e: the first is not
satisfied if R is not defined at e, or produces several solutions for y if R is not
unique at e, whereas the second is undefined in these cases. This difference is
resembled in the implementation: application, µ-expressions, and related forms
are realized by encapsulated search. During encapsulated search, free variables
from the enclosing context are not allowed to be bound. A constraint requiring
a value for such variables residuates until the context binds the variable. As a
consequence, if we had defined the recursive path of add as {x , y , z : N | z =
add(x , y) • (S x , y) 7→ S z} (instead of using (x , y) 7→ z ∈ add), backwards
computation is not be possible:

{x : N | x less three}

−→ unresolved constraints:

LTX:cpinz(48.24-48.31) waiting for variable x

Here, the encapsulated search for add(x , y), solving µ z : N | ((x , y), z) ∈ add ,
cannot continue, since it is not allowed to produce bindings for the context
variables x and y .

 markuslepper.eu

 IS
BN 3

-5
40

-4
12

85
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-41285-9

The elegance of the functional paradigm comes from the fact that functions
are first-class citizens. In our implementation of execution for Z, sets are first-
class citizens as well. For example, we define a function describing relational
image as follows:

[X ,Y]

(| |) == λR : P(X × Y); S : P X • {x : X ; y : Y | x ∈ S ; (x , y) ∈ R • y}

A query for the relational image of the add function over the cartesian product
of the numbers less then three yields in:

let ns == {x : N | (x , three) ∈ less} • add(|ns × ns |)

−→ {Z,S(Z),S(S(Z)),S(S(S(Z))),S(S(S(S(Z))))}

Universal quantification is executable if it deals with finite ranges. For exam-
ple, we can define the operator denoting the set of partial functions in Z, A 7→B ,
as follows:

[X ,Y]

7→ == {R : P(X × Y) | (∀ x : X | x ∈ domR • ∃
1
y : Y • (x , y) ∈ R)}

Universal and unique existential quantification are resolved by enumeration.
Thus, if we try to check whether add is a partial function, we get in a few
seconds:

add ∈ N × N 7→ N

−→ still searching after 200000 steps

gc #1 reclaimed 28674k of 32770k

...

In enumerating the domain of add our computation diverges. However, if we
restrict add to a finite domain it works:

∃
1
ns == {x : N | (x , three) ∈ less} • ((ns × ns) C add ∈ N × N 7→ N)

−→ *true*

Above, A C R restricts the domain of R to the set A; the existential quantor is
used to introduce a local name in the predicate.

3 Encoding of Temporal Interval Logics

Temporal interval logics [8, 3] is a powerful tool for describing requirements on
traces of the behavior of real-time systems. For a discrete version of this logic,
related to Moszkowski’s version of ITL, an embedding into Z has been described

 markuslepper.eu

 IS
BN 3

-5
40

-4
12

85
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-41285-9

in [1]. Here, we develop an executable shallow encoding for the positive subset of
this kind of ITL. The encoding supports resolution for timing and observation
constraints (going behind Moszkowski’s Tempura implementation), demonstrat-
ing some of the capabilities of Executable Z in the ZETA system.

3.1 The Encoding

We define temporal formulas generic over a state type Σ, such that the behav-
iors we look at have type seqΣ (seq is Z’s type constructor for sequences). A
predicate over a state binding is a unary relation, p ∈ SP [Σ] = P Σ:

SP [Σ] == PΣ

A temporal formula is encoded by a set of so-called arcs, w ∈ TF [Σ] =
PARC [Σ]1, which basically model a transition relation. An arc is either a proper
transition, tr(p,w), where p is the guard for this transition and w a followup
formula, or the special arc eot which indicates that an interval which satisfies
this formula may end at this point:

TF [Σ] == PARC [Σ] ARC [Σ] ::= eot | tr〈〈SP [Σ] × TF [Σ]〉〉

xs ∈T w is the satisfaction relation of this encoding of temporal formulas,
and is defined as follows:

[Σ]

∈T : seq Σ ↔ TF [Σ]

(∈T) = {w : TF [Σ] | eot ∈ w • (〈〉,w)}∪

{x : Σ; xs : seqΣ; p : SP [Σ]; w ,w ′ : TF [Σ] |

tr(p,w ′) ∈ w ; x ∈ p; xs ∈T w ′ • (〈x 〉 a xs ,w)}

Thus, if eot is an arc of the transition relation, then the empty interval is valid.
Moreover, all intervals are valid such that their exists a transition whose pred-
icate fulfills the head of the interval, and the tail of the interval satisfies the
followup formula of this transition.

We know define the operators of our logic, which construct values of type
TF [Σ]. The formula which is satisfied exactly by the empty trace is encoded
by the singleton transition containing the eot arc. The formula ↑ p lifts a state
predicate p to an interval formula which holds exactly for those intervals of
length 1 containing a state which satisfies p:

1 We use the powerset-constructor P which models a computable powerset domain.
Using the general power, P, our free type definition of ARC would be inconsistent
in Z, since a free type’s constructor cannot have a general powerset of the type in
its domain.

 markuslepper.eu

 IS
BN 3

-5
40

-4
12

85
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-41285-9

[Σ]

empty == {eot [Σ]}

[Σ]

↑ == λ p : SP [Σ] • {tr(p, empty)}

Next we look at disjunction, w1 t w2, and its generalized form. Disjunction
is realized by simply mapping it to the union of the arc sets of both formulas:

[Σ]

t == λw1,w2 : TF [Σ] • w1 ∪ w2

[Σ]
⊔

== λws : P TF [Σ] •
⋃

ws

Beware that the generalized disjunction operator can be used for introducing
“local variables”, as on

⊔
{x : T • TF [x]}.

Conjunction, w1uw2, constructs new arcs by pairwise combination of all arcs
of w1 and w2 – the conjunction is recursively “pushed” through these combina-
tions:

[Σ]

u : TF [Σ] × TF [Σ] → TF [Σ]

(u) = λw1,w2 : TF [Σ] •
(if eot ∈ w1 ∧ eot ∈ w2 then empty else ∅)t

{p1, p2 : SP [Σ]; w ′

1,w
′

2 : TF [Σ]

| tr(p1,w
′

1) ∈ w1; tr(p2,w
′

2) ∈ w2 • tr(p1 ∩ p2,w
′

1 u w ′

2)}

w1
o
9w2 is sequential composition (“chop”). The followup-formula w2 is recur-

sively pushed through the arcs of w1 until eot is reached:

[Σ]
o
9 : TF [Σ] × TF [Σ] → TF [Σ]

(o
9) = λw1,w2 : TF [Σ] •

(if eot ∈ w1 then w2 else ∅)t

{p : SP [Σ]; w ′

1 : TF [Σ] | tr(p,w ′

1) ∈ w1 • tr(p,w ′

1
o
9 w2)}

w∗ is the repetition of w for zero or more times, w+ for one or more times.
In the definition of ∗, we need to embed the recursive reference to ∗ in a
set-comprehension, since our implementation of Z imposes a strict (eager) eval-
uation order. The formula skip holds for arbitrary singleton intervals. Temporal
truthness, satisfied by any interval, is the repetition of skip. Temporal falsity is
described by the empty set of arcs:

 markuslepper.eu

 IS
BN 3

-5
40

-4
12

85
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-41285-9

[Σ]
∗ : TF [Σ] → TF [Σ]

(∗) = λw : TF [Σ] • empty t ((w \ empty) o
9 {a : ARC [Σ] | a ∈ w∗})

[Σ]
+ == λw : TF [Σ] • w o

9 w∗

[Σ]

skip == ↑Σ

[Σ]

true == skip[Σ]∗
[Σ]

false == ∅[ARC [Σ]]

We animate the encoding of some formulas. Suppose type Σ is instantiated
with Z. Recall that our observation predicates are sets, hence we can use e.g. {1}
as a predicate which is exactly true for the state value 1:

↑{1} o
9 empty o

9 ↑{2}
o
9 empty V {tr({1},{tr({2},{eot})})}

↑{1}∗ V {eot,tr({1},{eot,tr({1},...)})}
↑{2, 3}∗ u (↑{1, 2} o

9 ↑{3, 4}) V {tr({2},{tr({3},{eot})})}

The first example shows neutrality of empty on chop. The next example illus-
trates how the repetition operator incrementally “unrolls” its operand (the ZETA

displayer has stopped unrolling after a certain depth). In the last example, the
effect of conjunction is shown.

Using the satisfaction relation t ∈T w , we can now test whether a trace t

fulfills a formula w and – provided the state predicates are finite – also generate
the set of traces which satisfy a formula. Here are some examples

〈1, 2, 3, 1, 2, 1〉 ∈T (true o
9 ↑{x : Z | x ≥ 2}+)∗ V *false*

〈2, 2, 2, 1, 2, 2〉 ∈T (true o
9 ↑{x : Z | x ≥ 2}+)∗ V *true*

{t : seq Z | t ∈T ↑{1, 2}+} V {<1>,<2>,<1,1>,<1,2>,...}

In the first two examples above, the formula states that the interval must be
partitionable into zero or more sub-interval such that in each sub-interval, from
some point only numbers greater or equal two appear. This is not satisfied by the
first trace, but by the second, choosing the right partitioning. The third example
shows the generation of traces.

Our encoding allows the use of free variables in state predicates. For example,
we can define a formula which is satisfied by all traces which contain adjacent
values. The variable can be existential quantified, or as in the example below,
bound by a set comprehension to enumerate its possible bindings:

{x : Z | 〈4, 1, 1, 3, 2, 2〉 ∈T true o
9 ↑{x}

o
9 ↑{x}

o
9 true} V {1,2}

We will use this feature in the next section in order to introduce timing con-
straints.

 markuslepper.eu

 IS
BN 3

-5
40

-4
12

85
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-41285-9

3.2 Timing Constraints

Due to the higher-orderness of Z and our implementation, it is easily possible to
add new temporal operators. Suppose that our state type Σ contains a duration
stamp describing the time distance to the next observation2, and that this stamp
is selected by the function getd : Σ→T . We then can define a duration operator
DUR(getd , d) which holds for those intervals whose duration is d 3:

T == Z

[Σ]

DUR : (Σ →T) × T → TF [Σ]

DUR = λ getd : Σ →T ; d : T •⊔
{σ : Σ | getd σ = d • ↑{σ}}t⊔
{σ : Σ; d ′ : T | d = getd σ + d ′ • ↑{σ} o

9 DUR(getd , d ′)}

This definition makes use of the “generalized disjunction” for temporal for-
mulas,

⊔
(see 3.1), to introduce local variables σ and d ′. In general, the set-

comprehension {x : T | P • w}, where w is a temporal formula, denotes the set
of all formulas for instances of x which satisfy P . Since a temporal formula is
a set of arcs, the generalized disjunction simply collects all arcs from all formu-
las, by its definition

⊔
=

⋃
. The name

⋃
is in turn defined in the Z standard

library as
⋃

SS = {x : X ; S : P X | S ∈ SS ; x ∈ S • x}. Our implementation
enumerates the solutions to S ∈ SS symbolically; henceforth

⋃
also works if SS

is not finite, as in the definition of DUR.
In the definition of DUR(getd , d) two cases are distinguished. Either the

interval contains exactly one state with duration d , or d is the result of adding
getd σ of the heading state and d ′ for the remaining states.

As an example, we calculate the partitions of an interval with equal dura-
tion, using repetition on the duration operator (where our state contains only
durations, and the identity function id selects them):

{d : T | 〈1, 1, 2, 2, 2〉 ∈T DUR(id, d)∗}

−→ {2,4,8}

Note that the partitionings are not of equal length regarding the number of
states in an interval. For the duration 2, we use 〈1, 1〉 and the remaining three
〈2〉 partitions. For the duration 4, we have 〈1, 1, 2〉 and 〈2, 2〉. For duration 8,
one partition containing all states is recognized.

3.3 Application

Fig. 2 gives a very simplified example how to apply our temporal logics for
requirements specification. The specification defines some aspects of the behavior

2 Currently, in our implementation of Z only integral numbers are supported – hence
we define time as integral numbers.

3 Beware that we do not support an “overlapping chop”; therefore intervals which
limits fall between two data samples of the given behavior are never considered.

 markuslepper.eu

 IS
BN 3

-5
40

-4
12

85
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-41285-9

Fig. 2 Elevator Requirements

POS == N FLOOR == {0, 20, 40, 60, 80}

delay == 15

STATE
dur : T ; pos : POS ; open, request : PFLOOR

getd == λ σ : STATE • σ.dur
Safety == ↑[STATE | ∀ f : FLOOR | f ∈ open • pos = f]∗

Serve == λ f : FLOOR •
↑[STATE | f /∈ request] t

(↑[STATE | f ∈ request ∧ f 6= pos]+o
9

F

{d : T | d < delay • ↑[STATE | f = pos]∗ u DUR(getd , d)}o
9

↑[STATE | f ∈ open]+)
Liveness == Serve(0)∗ u Serve(20)∗ u Serve(40)∗ u Serve(60)∗ u Serve(80)∗

Reqs == Safety u Liveness

of a (much simplified) elevator controller. The elevator’s state is modeled by a
set of sensors which are combined with a duration stamp into the system state
STATE . The sensors are the current position of the elevator and two sets which
represent the state of doors at each floor and of request buttons. Floors are
modeled as a subset of positions.

Our requirements are composed from the conjunction of sub-requirements:

– Saftey : a door must be only open if the elevator is at the floor of the door.
– Serve: describing the service requirements for a given floor f : Either the floor

is not requested, or – if the elevator is requested at this floor – the elevator
can be anywhere else. But as soon as it reaches the floor, it must stop there
and open the door at least after delay seconds. (The specification does not
handle error situations, where the elevator does not work for some reason.)

– Liveness : is simply the conjunction of all service requirements for all floors.

Such a specification can now be used for test-evaluation, feeding it with the
concrete traces produced by an implementation of the controller. For example,
let some test traces (parameterized over a duration stamp) be defined as follows:

t1 == λ d : T • 〈〈| dur == d , pos == 0, open == ∅, request == {20} |〉,

〈| dur == d , pos == 20, open == ∅, request == {20} |〉,

〈| dur == d , pos == 20, open == {20}, request == ∅ |〉〉

t2 == λ d : T • 〈〈| dur == d , pos == 0, open == ∅[Z], request == {20} |〉,

〈| dur == d , pos == 20, open == ∅, request == {20} |〉,

〈| dur == d , pos == 40, open == ∅, request == {20} |〉〉

Here are some evaluation results:

t1 10 ∈T Reqs V *true*; t1 40 ∈T Reqs V *false*; t2 10 ∈T Reqs V *false*

 markuslepper.eu

 IS
BN 3

-5
40

-4
12

85
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-41285-9

In the second case, the elevator stopped at the requested floor but did not opened
the door in time. In the third case, the elevator passed a requested floor without
stopping.

The performance of test-evaluation highly depends on the kind of specifica-
tion. For the above specification we check traces of around thousand elements in
approx. 30 seconds. However, it is possible to formulate specifications which are
intractable to execution since deep backtracking is required to recognize traces.
These specifications involve constructs such as (trueo

9decision1)t(trueo
9decision2).

 markuslepper.eu

 IS
BN 3

-5
40

-4
12

85
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-41285-9

4 Conclusion and Related Work

We have presented a case study of the ZETA system, a practical, working setting
for developing specifications based on the Z language, which allows for executing
a subset of Z based on concurrent constraint resolution. The example of encoding
temporal interval logics showed that higher-orderness is a key feature for an
environment where we can add new abstractions and notations in a convenient
and consistent way: in that temporal formulas are first-class citizens, we could
define the operators of the logic as functions over formulas. Below, we discuss
some further aspects.

Animating Z. Animation of the “imperative” part of Z is provided by the ZANS
tool [7], imperative meaning Z’s specification style for sequential systems us-
ing state transition schemas. This approach is highly restricted. An elaborated
functional approach for executing Z has been described in [11], though no imple-
mentation exists today, and logic resolution is not employed. Other approaches
are based on a mapping to Prolog (e.g. [12, 13]), but do not support higher-
orderness. The approach presented in this paper goes beyond all the others,
since it allows the combination of the functional and logic aspects of Z in a
higher-order setting.

Functional and Logic Programming Languages. There is a close relationship of
our setting to functional logic languages such as Curry [6] or Oz [9]: in these
languages it is possible to write functions which return constraints, enabling
abstractions as have been used in this paper. However, our setting provides a
tighter integration and has a richer predicate language as f.i. Curry, including
negation and universal quantification which are treated by encapsulated search.
The role of a function as a special kind of relation as a special kind of set, and
of application e e ′ just as an abbreviation for µ y | (e ′, y) ∈ e, makes this tight
integration possible.

Integrating Specific Resolution Techniques. Currently, our implementation is not
very ambitious regarding the basic employed resolution techniques. Central to
the computation model is not the basic solver technology (which is currently
mere term unification) but the management of abstractions of constraints via
sets. However, the integration of specialized solvers for arithmetic, interval and
temporal constraints is required for our application to test-evaluation. The ex-
tension of the model to an architecture of cooperating basic solvers is therefore
subject of future work.

 markuslepper.eu

 IS
BN 3

-5
40

-4
12

85
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-41285-9

References

1. R. Büssow and W. Grieskamp. Combinig Z and temporal interval logics for the
formalization of properties and behaviors of embedded systems. In R. K. Shyama-
sundar and K. Ueda, editors, Advances in Computing Science – Asian ’97, volume
1345 of LNCS, pages 46–56. Springer-Verlag, 1997.

2. R. Büssow and W. Grieskamp. A Modular Framework for the Integration of Het-
erogenous Notations and Tools. In K. Araki, A. Galloway, and K. Taguchi, editors,
Proc. of the 1st Intl. Conference on Integrated Formal Methods – IFM’99. Springer-
Verlag, London, June 1999.

3. Z. Chaochen, C. A. R. Hoare, and A. Ravn. A calculus of durations. Information
Processing Letters, 40(5), 1991.

4. W. Grieskamp. A Set-Based Calculus and its Implementation. PhD thesis, Tech-
nische Universität Berlin, 1999.

5. W. Grieskamp. A Computation Model for Z based on Concurrent Constraint
Resolution. To appear in ZB2000 – International Conference of Z and B Users,
September 2000.

6. M. Hanus. Curry – an integrated functional logic language. Technical report,
Internet, 1999. Language report version 0.5.

7. X. Jia. An approach to animating Z specifications. Internet: http://saturn.cs.
depaul.edu/~fm/zans.html, 1996.

8. B. Moszkowski. Executing Temporal Logic Programs. Cambridge University Press,
1986. updated version from the authors home page.

9. G. Smolka. Concurrent constraint programming based on functional programming.
In C. Hankin, editor, Programming Languages and Systems, Lecture Notes in Com-
puter Science, vol. 1381, pages 1–11, Lisbon, Portugal, 1998. Springer-Verlag.

10. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

11. S. Valentine. The programming language Z−−. Information and Software Tech-
nology, 37(5–6):293–301, May–June 1995.

12. M. M. West and B. M. Eaglestone. Software development: Two approaches to an-
imation of Z specifications using Prolog. IEE/BCS Software Engineering Journal,
7(4):264–276, July 1992.

13. M. Winikoff, P. Dart, and E. Kazmierczak. Rapid prototyping using formal speci-
fications. In Proceedings of the Australasian Computer Science Conference, 1998.

14. Drafts for the Z ISO standard. Ian Toyn (editor). URL:
http://www.cs.york.ac.uk/~ian/zstan, 1999.

 markuslepper.eu

 IS
BN 3

-5
40

-4
12

85
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-41285-9

