
Co-Algebraic Modeling as an Adequate Means
for Representing, Transforming and Discussing

Transcendentally Defined Æsthetic Objects
(extended abstract)

Markus Lepper, Baltasar Trancón y Widemann

Technische Universität Berlin, Fakultät IV,
Institut für Softwaretechnik und Theoretische Informatik,

Fachgruppe ÜBB, Sekr. FR 5–13,
Franklinstr. 28/29, D–10587 Berlin,

E-mail: {lepper,bt}@cs.tu-berlin.de

1 Basic Aspects of Computer-Based
Modeling of Music

1.1 Informatical Analysis and Synthesis as

Device for General Cognition

Under certain circumstances the usage of digital informa-
tion processing can be of some benefit even in humanities
(
”

����� ����� �	�
����� ������� ���
“).

An outstanding example is music, because the structure of
its material is already quite similar to mathematics.

One of the basic axioms underlying the work of the authors’
research group is, that applying

”
computer science“ to a

given problem in a first step always has to explore, extract
and explain the mathematical contents of that problem.
(This is often called

”
applying Formal Methods“.)

If, in a second step, computer technology shall be applied,
the results of this analysis necessarily form the basis for ev-
ery efficient implementation (since even the computer can-
not solve problems, which are mathematically unsolvable
;-)

But also without any technological context, the result of
applying analytical tools of computing science can enrich
our insight into the structures of the problem: A mathe-
matical model can be very helpful for more preciseness even
in discourses on a pure conceptual level, for clarifying the
underlying structures and material

”
boundary conditions“

of a certain weltanschauung 1.

A specialization of this principle occurs in language design,
— a central topic in the authors’ research group: As soon
as a complex process, e.g. in public administration, can be
mapped to or modeled by a specially defined (or adopted)
language, then this process can be specified with the appro-
priate accuracy, and potentially brought into clearer focus.

1Cf. the model of the compositional process in [2].

1.2 Models, Meta-Models and Executability

In the following, each data object that is meant to describe
one musical corpus is called a model.

Then any meta-model defines a family of possible models,
— any meta-model is a description, how to encode certain
semantics into a corresponding model, and, inversely, how
to interpret a given model. Further a meta-model may
impose consistency constraints on all of its models.

A meta-meta-model is a high-level language for describing
(or

”
specifying“) meta-models.

A meta-model is called executable, if its models are exe-
cutable. A model is executable2, if it is not only a static
representation of fixed information, but shows a dynamic
behaviour: At least some

”
new“ pieces of information,

which have not been put explicitly into the model during
its construction, must be derivable by applying computa-
tional rules to the stored information.

Moreover, an executable model is able to perform local
updates, ie. local changes of its information state, and
automatically re-establish all integrity conditions and re-
calculate all derived values which are affected by this al-
teration.

Computer-aided modeling is of course really beneficial only
if the model is executable. Practically, this can only be
achieved by enriching the corresponding meta-model with
rules for execution (or compilation), which can be applied
to all of its instance models.

The approach described in this paper goes one step further:
It presents the outlines of one certain meta-meta-model,
called m

2
0, which contains evaluation rules sufficient for the

executability of any model of any meta-model constructed
in m

2
0.

2or
”
deductive“ in the nomenclature of data base engineering

1

 markuslepper.eu

 IS
BN 3

-9
31

82
5-

66
-0

http://markuslepper.eu
http://www.worldcat.org/search?q=3-931825-66-0

Figure 1 Type Construction Language

type ::= ID

| Nat | Num | Rat | Real | Text | . . .

| ident ([(type ∪ expr)+])?

| type ONLY constraint

| (ident :)? type (* (ident :)? type)+

| ident (: type)? (+ ident (: type)?)+

| (OPT | SET | BAG | SEQ) type

| (MAP | REL | FUN) type => type

1.3 The Rôle of Models and Meta-Models in

Practice

In traditional programming the usage of models is sep-
arated into two disjoint worlds, called

”
file formats“ (or

”
transmission encodings“) vs.

”
internal representation“.

When describing file formats, the meta-models are used
in a

”
passive“ way, because evaluation is only needed on

a conceptual level, for describing the intended semantics.
Nevertheless the model is somehow

”
active“.

The modern standpoint is substantially different: How
much of the semantics of the meta-model will indeed be

”
implemented“, and how much will only be present on the

conceptual level, is a purely technical question of secondary
range. In any case the semantics of the meta-model should
be meta-meta-modeled consistently and most completely.

The difference between a
”
disk file“, i.e. some encoding

of the models for the sake of data interchange, and the

”
active“ model maintained

”
in“ the computer is indeed just

a technical one.

1.4 Existing Meta-Models from Academic and

Industrial R&D

While the following discourse tries to extract the central
deficiencies of nearly all existing systems, it does in no
case imply any neglection of the important and good work
done in all these approaches. On the contrary: the basic
propositions for the design on meta-meta-level contained
in this paper could not be described without the inten-
sive cultural discussion, achieved by the exchange of these
meta-models3.

Their first major deficiency is simply that they are meta-
models, i.e., they constrict modeling, since they are not
extensible w.r.t. the core semantics of the algebraic types
used to encode the different attributes.

But the decisions in favour of certain basic attribute types
are indeed ideological , they pre-determine the set of possi-

3A comprehensive survey of the most important models used
for information exchange (

”
file formats“) is given by the web-

page [1]. Due to lack of space please refer e.g. to [3] for further
bibliographic data.

Figure 2 Defining Algebraic Types for Metric Speci-
fications
IN PACKAGE cwn { // Common Western Notation

TYPE meter = num : std.nat ONLY {2 3 4 5 6 7 8 9}

* den : std.nat ONLY {2 4 8 16 }

}

IN PACKAGE special_for_composer_ml {

TYPE meter = sum : SEQ fract * sub : OPT fract

TYPE fract = num:std.nat * den:std.nat

}

IN PACKAGE special_bulgarian {

TYPE meter = nums : SEQ std.nat

* den : std.nat ONLY {2 4 8 16 }

}

ble models by supporting different
”
flavours“ of composing

more or less conveniently, and are often inadequate for spe-
cific æsthetic purposes.

Figure 2 shows definitions, i.e. meta-models, for different
algebraic types to represent metrical specifications, which
respectively allow denotations like. . .

3

4
(or)

3 + 2 + 3

8
(or)

3

2
+

1

4
−

1

12

In contrast, figure 1 shows a language which serves as our
meta-meta-model, suitable for defining the meta-models in
figure 2, as well as the co-algebraic types introduced below.

1.5 Case Study: Attaching Arbitrary Addi-

tional Information to Some Given Corpus

To show the necessity of co-algebraic information model-
ing, let us simply follow closely the way of operation when
assigning some additional information to some given ob-
ject:

What we have to do is . . .

1. to provide (a computer-readable encoding of) the in-
formation to be attached,

2. to identify the event (or set of events) to which the
information is attached, and

3. to choose some identifier for later retrieval/usage of
the stored information.

The first step must be provided by the
”
user“, but should

not impose severe difficulties, since the propositions do aim
at attaching any kind of information. Of course this implies
that the user provides the information in some computer-
readable meta-model, and that there is an encoding , which
allows to realize the information physically within the over-
all framework. The latter is merely a technical problem,
and the lately standardized

”
XML“ meta-encoding system

seems an adequate basis for defining these required encod-
ings.

2

 markuslepper.eu

 IS
BN 3

-9
31

82
5-

66
-0

http://markuslepper.eu
http://www.worldcat.org/search?q=3-931825-66-0

Figure 3 Defining the Co-Free Type of
”
bar“ Objects

IN PACKAGE cwn // Common Western Notation

COFREE TYPE timedEvent

= tstart * tend * tdura * tscale

* tsimul * tpred * tsucc ;

// In a co-free type definition, all factors

// of a product are implicitly optional!

COFREE TYPE bar = timedEvent**(metricSpec:[T]);

DEF metricSpec = ?metricSpec

|| ?tpred >> ?metricSpec

ON EVERY bar ;

DEF tdura:std.msec

= ?metricSpec:std.rat * (60000.0*4/(?tempo:MM))

ON EVERY bar ;

LAW (?tstart:std.rat + ?metricSpec:std.rat

= ?tend:std.rat)

OR (NOT ?tpred) OR (NOT ?tsucc)

ON EVERY bar ;

The third step simply requires some house-keeping or gen-
eration rules to keep identifiers unique.

1.6 Crucial Point: The Identity of Events

The crucial step is the second one: How can an identity of
e.g. an musical event be established ?

First we see that all above-mentioned meta-models use
some kind of container objects for organizing event
data. These containers may be called

”
voices“,

”
tracks“,

”
chunks“, etc.

This construction has two major disadvantages: Firstly the
containers are not only used for

”
additionally organizing“

certain aspects of the event data, but indeed they even
constitute the identity of the events, because every single

”
event“ — whatever an

”
event“ may be ! — is represented

on the next lower level of data hierarchy as an algebraic
term4.

But in an algebraic setting, identically formed terms rep-
resent identical objects. That means that each data object
of some given structure, e.g.

metric (sum=(num=3,den=2)::(num=1,den=4),

sub=(num=1,den=12))

represents one and the same
”
entity“ of the

”
mathematical

world“. So, if the container is supposed to have algebraic
semantics, any event does only exist in the context of a

4The second disadvantage is the missing correspondence be-
tween these technically defined and required container objects,
and the diverse and mostly non-disjoint groupings existing on
the conceptual level of musical analysis.

E.g. if I just want to place events somewhere in time, in a
Cageian manner, why do I have to put them into some

”
voice“

object, which does not correspond to any semantics of neither
the model nor of its psycho-internal counterpart ?

Figure 4 Construction of Some
”
bar“ Objects

ASPECT tempo=cwn.MM(72)

ASPECT metrSpec=cwn.meter(3,4) ;

ASPECT tpred=NULL, num=1 ;

tpred = NEW bar ;

ASPECT num= [(tpred>>num)+1] ; // quoted expr

tpred = NEW bar ;

tpred = NEW bar ;

ASPECT metrSpec=cwn.meter(2,4) ;

tpred = NEW bar ;

ASPECT tempo=cwn.MM(80)

tpred = NEW bar ;

tpred = NEW bar ;

”
container expression“, and cannot be referred to, identi-

fied or processed per se, i.e. out of this context.

Therefore some traditional meta-models introduce a global
definition space for attaching

”
labels“ to certain events.

But at this junction the basic semantic paradigm of alge-
braic data terms is broken, and the totally different world
of co-algebraic semantics is introduced into the system, — a
fact rarely noticed by the programmers of the meta-model5.

1.7 Co-Algebraic Foundation of Models of

Music

All these observations give reason to take the exact op-
posite viewpoint by making the identity the

”
first-class-

resident“ in our architecture. So there is a kind of co-
algebraic foundation of the semantics of each model: Ini-
tially every

”
event“ is given a single

”
identity“, which exists

and is distinguishable independently from any
”
attribute“

the event subsequently assumes6.

5This effect is comparable with that of giving
”
object“-

semantics to an XML-document, as it is done in W3C-DOM:
Then every paragraph does not carry only the information of its

”
contents“, the character data it consists of (i.e. its algebraic se-

mantics, where two
”
identically looking“ paragraph objects are

the same value object), but also the
”
knowledge“, that it is the

first paragraph in the second chapter of the XY-book. This may
seem quite harmless at a first glance, but it implies immediately,
that even the smallest

”
colon“-character appearing somewhere

in the text carries as its semantics the complete contents of the
whole document , and additionally the locator information cor-
responding to this colon!

It seems clear that the same tiny
”
colon“ has to be treated in

both cases quite differently!
6This principle also coincides with meta-meta-models from

the area of ����� �� ��� ��� ��� ��� � � � , where any transcendentally defined
object is constituted by an axiomatic act of proposing some self-
identity, cf. [3].

3

 markuslepper.eu

 IS
BN 3

-9
31

82
5-

66
-0

http://markuslepper.eu
http://www.worldcat.org/search?q=3-931825-66-0

Figure 5 Mapping Rules from Special to Standard
Types
DEF metricSpec:std.rat <== cwn.meter

= std.rat(num, den)

ON ALL bar

DEF metricSpec:std.rat <== special_bulgarian

= std.rat (REDUCE (nums,_+_,0), den)

ON ALL bar

DEF metricSpec:std.rat <== special_for_composer_ml

= std.rat (REDUCE (MAP(sum, std.rat(num,den)),

+, 0),

den)

- std.rat (sub.num, sub.den)

2 Practical Design and Possible
Architecture

While the considerations so far are on a somewhat abstact
level of applied theory, they nevertheless aim at a very prac-
tical goal, namely the realization of some concrete editing
and processing system. The fundamental outlines of its
architecture are fixed by these analytical results.

The research activities of the authors’ group concentrate
currently on defining and designing a general-purpose
meta-meta-language (

”
OPAL-2“), onto which the execution

of some m
2
0-model could be mapped. The results and ef-

forts presented in this paper will serve as a case study,
— a rather challenging case study, since the meta-meta-
modeling of musical structures is among the most complex
themes of data-modeling at all.

2.1 Architecture and Language Design

2.1.1 Corpus Definition Language

Let A be a finite, but dynamically growing set of aspect
names, I be a set of pre-defined identities, X be a set of

”
tracks“, S is the set of all algebraic signatures known to

the system which are used to represent
”
simple values“ (in-

cluding some wrapper encoding for
”
identities“), and let V

be the disjoint union of all free algebras induced by all sig-
natures currently known to the system, ie. V =

S

A (|S|),

Then each
”
physical“ model of a musical corpus can

roughly be described as . . .

K = (X × I × A) 7→ (S × V)
where π2 k(i, a, s) ∈ Ai(π1 k(i, a, s))

So for every combination of track object, event identity
and aspect maximally one value can be stored in some ar-
bitrarily chosen algebraic signature. It should be pointed
out that the

”
track“ is a pure practical concept.

As front-end representation we choose a scope-and-context-
based style, where the

”
current settings“ of aspect values

are inherited from outer by inner scopes. The call of an

object constructor
”
freezes“ the current settings into the

value fields of the newly created co-algebraic object, like in
figure 4, which shows the creation of a sequence of bars.

2.1.2 Evaluation, Query Language

But the information contents visible to the user of the
model, e.g. some tool application, is different, namely . . .

KR = (I × A × S 7→ V) ∪ (I × A 7→ S × V)

Consequently queries can be executed for the current value
of an aspect of a given identity, either by prescribing a
certain signature into which the value is converted, or by
accepting any signature, e.g. for further processing in a
transparent/polymorphic way.

The tracks are totally invisible to the user operating on
a model, but when opening the

”
view“, a certain stack of

tracks is configured, and the shadowing among these tracks
rules the evaluation. Only the top-level track is writable.

2.1.3 Functional Closed-Ness

Every modern computer language provides some means to
represent

”
programs“ as values, e.g. by allowing function-

valued expressions, parameters, results and variable con-
tents. This principle enables us to integrate the

”
interpre-

tation rules“ of the meta-model into the model data.

Such interpretation rules can be associated with a certain
meta-model, a certain model, a certain

”
use-case“ of inter-

preting a model, or even with one single event, — all these
very different applications are achieved using the same lan-
guage means.

Operational semantics are always defined by recurring to
existing processing algorithms, e.g. from a run-time library,
and by calling, parameterizing and combining them to re-
alize the calculation according to the intended semantics.

In our example, figure 5 defines one mapping for each new
introduced algebraic type for metrical specification into the
standard type of (positive) rational numbers. By adding
these translation rules, all

”
library“ functions which re-

quest a value for .metricSpec in this standard format also
work on our newly defined and freshly invented formats.
E.g. the

”
LAW“ established in figure 3, — whereby each bar

has to be
”
complete“, except the very first and the very

last, — automatically works for all types of metrical spec-
ification the user wants to add to the meta-model.

References

[1] Gerd Castan. (survey website on musical notation etc.).
2002, http://www.music-notation.info.

[2] Markus Lepper. Komposition als Disposition von Da-
tentransformation und Sprachdesign. Number 14 in
Folkwang-Texte. Essen, 1999.

[3] Markus Lepper. Modeling Music Using XML — Some
Basic Considerations. In Proceedings of the MAX 2002,
First International Conference on Musical Application
using XML, pages 30–37. IEEE CS / TC on Computer
Generated Music, 2002.

4

 markuslepper.eu

 IS
BN 3

-9
31

82
5-

66
-0

http://markuslepper.eu
http://www.worldcat.org/search?q=3-931825-66-0

