
Model-based Testing for Matlab/Simulink Technical Notice

TN MTest-2001-6

ATCH Installation and Users Guide

Markus Lepper
— ÜBB/TU Berlin —

mw0-2.tut —DRAFT— 19.06.2002

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

2 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Contents

Contents

1 ATCH Principles 5

2 Installation and Configuration in a MATLAB/simulink Environment 5
2.1 Installation . 5
2.2 Changing the directory/file locations 6

3 Using ATCH 7
3.1 ATCH Blocks . 7
3.2 Manual Installation of an ATCH block 8
3.3 Resolving of file names – Windows NT version 10
3.4 The ATCH API for Program Controlled Watchdog Installation . . 10
3.5 The ATCH Console for Controlling Multiple Predicates from One

File for One Subsystem . 10

4 Structure of an ATCH Specification File 13
4.1 File Sections representing different ATCH Predicates 13
4.2 Comment lines . 14

5 The ATCH Language of Temporal Predicates 14
5.1 Accessing simulation data via 〈TestPoint〉s 14
5.2 Instantaneous Predicates . 15
5.3 Syntax and Semantics of the Temporal Combinators 15
5.4 Auxiliary Language Constructs . 17

5.4.1 Defining testdata . 17
5.5 The ATCH Macro Facility . 18

5.5.1 Lexical Scopes and Shadowing 18
5.5.2 Resolving of macros . 19

6 Issues of Practical Operation 23
6.1 Principles of the MATLAB/simulink/ ATCH Interface 23
6.2 Timing Considerations and Treatment of a

”
Final Verdict“ 23

6.3 Persistency . 24
6.4 Error Diagnosis . 24

7 Little Example and Tutorial 25
7.1 Example Text . 25
7.2 Explanations . 29

7.2.1 . 29
7.2.2 . 30
7.2.3 . 31
7.2.4 . 31

A Embedding into MTest 32

3 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

List of Tables

List of Figures

1 Operation Specification for Installing ATCH 6
2 Operation Specification for Running a Simulation with an ATCH-

Block Operated through the GUI . 8
3 NICHT MEHR GANZ AKTUELL !!! Layout of the ATCH blocks

mask. 9
4 Syntax of the ATCH top level file structure. 13
5 The grammatical circles of the ATCH language 20
6 Schematic Grammar of the ATCH Predicate Language. 21
7 Schematic Grammar of the ATCH Macro Facility. 22

List of Tables

1 The ATCH API for programmed control of blocks 11
2 The ATCH API related to Specification Files 12
3 List of supported MATLAB/simulink library functions 16

simulink is a trademark of
”
The Mathworks,Inc.“, Natick, MA, USA

MATLAB is a trademark of
”
The Mathworks,Inc.“, Natick, MA, USA

4 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

1 ATCH Principles

ATCH is a tool for the evaluation of test data traces against a given temporal
specification.

A systems behavior – given as a sequence of tuples of values, each tuple repre-
sents a system state sample and is tagged with a time stamp, – is checked against
a term which denotates a set of legal traces.

This checking is implemented dia-chronuosly, so that any violation of the spec-
ification will be detected as soon as possible with respect to the consumed data, and
out-of-time as well as realtime application are feasible.

While the ATCH algorithm is of course totally independent from the kind
of system to check, its actual implementation is done as a

”
block set“ in the

MATLAB/simulink environment. An ATCH block can be inserted into a simulink
model to watch the behavior of the model during a simulation run and create the
verdict in simulated real time.

Currently our implementation supports MATLAB version 5.3.1(.29215a), i.e.
MATLAB R11.1, together with

”
simulink 3“.

The following sections describe the installation and operation of this implemen-
tation, while section 5 describes the ATCH language and semantics and section
7 explains a small example operating on the model

”
sf car“, which is contained in

the MATLAB/simulink distribution.

2 Installation and Configuration in a

MATLAB/simulink Environment

2.1 Installation

All you have to do for installing is unzip the distributed .zip-archive and add
some directories to your MATLAB-search-path. Additionally you can adjust some
parameters in the

”
Configuration“ block in the ATCH blockset.

The file structure of the ATCH.zip archive is 1 . . .

• directory visible :

– the ATCH blockset library (MWatchLib.mdl),
– diverse MatLab function files (mw<xxxx>.m),
– the executive

”
S-Function“ implementation (mwdoeval4.dll),

– the ATCH-compiler (mw02.exe),

• directory demo :

– some demo files (<xy>.mw, <xy>.mat and <xy>.mdl)

• directory doc :

– this file.

1The names of the files will probably change slightly in future releases, but except the name of
the library you really do not need to know them :-)

5 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

2 Installation and Configuration in a MATLAB/simulink Environment

Figure 1 Operation Specification for Installing ATCH

unzip the distributed .zip file to directory <mwdir>

-> (add the directory "<xmwdir>/visible" to your Matlab search path

| add the directory "<xmwdir>/tmp" to your Matlab search path

| ? add the directory "<xmwdir>/demo" to your Matlab search path

)

-> Call "MWatchSetup" from the Matlab command prompt.

-> The library opens

-> Do "unlock library" in the libraries menu

-> Press "return" at the Matlab command prompt

-> ? Adjust the default settings in the configuration block

The sequence for installing ATCH is as follows :

1. Unzip the ATCH-archive into an arbitrarily named directory. (The path of
this directory will be referred to as <mwatchdir> in the sequel.)

2. Add the directory <mwatchdir>/visible to your MATLAB search path2.
3. Add the directory <mwatchdir>/tmp to your MATLAB search path.
4. If you want to run the demos, you must additionally add the directory

<mwatchdir>/demo to your MATLAB search path.
5. Call MWatchSetup from the MATLAB command prompt.

MWatchSetup will set the paths and locations used for executing ATCH

automatically depending on the location of <mwatchdir>.
The values will be stored in the parameters of the configuration block in
the MWatchLib library. Since there is no (documented) possibiliy to unlock
an open library by programmed commands, you have to do the unlocking
manually when prompted to do so.

After this installation, and if the 〈mwatchDir〉/demo directory is included in
the MATLAB path, the functionality of ATCH can easily be tested by issuing the
command (preliminary :)

mwDemo (4)

from the MATLAB command line. A demo model shall open, an ATCH-block
will be inserted and launched, and when running the simulation the block shall turn
red or green.

2.2 Changing the directory/file locations

The parameter values of the block MWatchLib/configuration can be adjusted ac-
cording to your needs at any time3.

2This can be done either by starting pathedit from the MATLAB prompt, or by adding a path

command to your MATLAB startup script, – please refer to the MATLAB/simulink documentation
for details.

3Actually there are only two parameters, but maybe there are more to come . . .

6 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Especially if you change the position of the tmp directory (since this is the
only one which must be writable and therefore should not reside in the read-only

ATCH-domain) you must put the new position onto the MATLAB search path.

3 Using ATCH

To run a simulink-session with ATCH-verification active, you must

1. create a file containing the specification to be checked against.
2. install one ore more ATCH blocks into the system to be watched.
3. run the simulation as usual.

For the first step any text editor can be used, since an ATCH file is an
ordinary ASCII text file4 containing a specification in the ATCH language. The
structure of such a file is described in section 4 and the constructs and meanings of
the ATCH language are described in detail in section 5.

The last step is performed as usual.
For the second step there are three possibilities :

1. Installing an ATCH block manually by
”
drag’n’drop“ and entering the the

file system location of the text file into a field of the
”
mask“ of this block.

2. Install an ATCH block with a given specification file by calling the
ATCH API.

3. Installing an ATCH Console which allows easy selection of different predi-
cates from one single file, as long as they are related to the same (sub-)system,
and generates an XML coded test protocol.

3.1 ATCH Blocks

The central means for linking a simulink model to the ATCH algorithm is the
installation of an ATCH block into this system.

Each ATCH block has two (2) outports called pass and fail. These are of
type boolean and will turn to true as soon as a pass or fail of the specification is
detected. An ATCH block is a

”
masked subsystem“, into which the instantaneous

predicates (will be explained later in 5) will be compiled as a simulink network, and
which contains an

”
S-function“ block realizing the evaluation algorithm as a .DLL.

The system immediately containing a certain ATCH block is the
”
Sub-

System Under Test“ from this ATCH blocks
”
point of view“. It will be referred

to by
”
SSUT“ in the following. All naming of signals and ports occuring in a

specification linked to a certain ATCH-block is always resolved relatively to this
SSUT.

An ATCH block does not have any inputs. All signals which are to be
watched are fed by

”
From“ and

”
Goto“ blocks into the subsystem. Those blocks

will be inserted automatically into the SSUT and will be removed as soon as the
ATCH block is deleted.

4The lexer currently in use does not support larger character sets, i.e.
”
Latin-1“ or

”
unicode“

is not supported.

7 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

3 Using ATCH

Figure 2 Operation Specification for Running a Simulation with an ATCH-Block
Operated through the GUI

provide a SIMULINK model for being tested

-> (write one or more MWatch file(s) with specs for this model

| (open topsystem under test -> open subsystem to test)

| open MWatch library)

-> drag’n drop an Mwatch block into SSUT

-> double click on MWatch block for getting the mask

-> enter filename or path (maybe with section name) into textfield

-> * (click onto "edit" -> *(edit the file -> save the file))

-> (click onto "compile and load"

-> system: does compilation and linkage

| ? set checkbox "hold on fail"

| ? set checkbox "hold on pass"

)

-> ? close mask using "OK"-button

-> run simulation

Every signal and value contained in the toplevel of the SSUT can be watched,
as well as those in any arbitrarily deep subsystem of the SSUT, as long as all library
links leading to this subsystem are

”
broken“.

3.2 Manual Installation of an ATCH block

Simply open the ATCH library as usual (e.b. by issueing
”
open mwatchlib“

from the MATLAB command prompt) and
”
drag’n’drop“ the ATCH Block into

the system to check. You can install more than one ATCH block into the same
system, thus checking it against different specifications simultaniously.

For each block you have to identify the specification to check against by giving
the position of the specification file in the file system, maybe together with the
name of a section. Further you can influence the behavior of the ATCH block by
additional input fields in the block’s mask.

Double-clicking on the ATCH block opens the parameter mask as shown in
figure 3.

The path of the ATCH source file to check against has to be entered into
the topmost text field. The way how file pathes are resolved is operating system
dependent and explained in section 3.3.

The check buttons below are abused as command buttons, because such are
not foreseen in a simulink mask, e.g. clicking on these boxes will make a check mark
appear and be deleted again immediately, after the command is executed.

The
”
Edit“-button will launch the MatLab Editor with the given file.

The
”
Compile&Load“-button will start the ATCH compiler. After suc-

cessful compilation the ATCH box will be launched with the specification, thus
appearing in yellow color in the systems display.

Before the compilation is started, any existing launching of the ATCH box

8 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

3.2 Manual Installation of an ATCH block

Figure 3 NICHT MEHR GANZ AKTUELL !!! Layout of the ATCH blocks
mask.

file name entry

compile command button

edit command button
last message display

simulation control :

”
stop on pass/fail“

”
trace on“ = DEBUG ONLY

history of filenames

KONFIGURATION ONLY :
unlock configuration
compiler path
temp dir path

will be cleared, and the ATCH box will appear in white color.
If there are any errors in compiling or launching, – e.g. syntax errors, invalid

block names, etc. – the error message appears in the
”
message“ window and is

echoed the MatLab command window.
preliminary : A modal dialog could be opened too !!??
The ATCH block will stay white (=not launched) in these cases.
If the file contains sections (see below 4.1), the file name has to be followed by

the name of the section to be used, preceeded by a hashmark sign (#).
All files which have been compiled and launched successfully are stored in the

file name history . Selecting a line in the
”
file name history selection field“ just copies

the text into the file name entry field, so the procedure of compiling, launching,
editing etc. must be performed in the same way as if the file name had been entered
character by character5.

To disactivate an ATCH-box just open the selection box of the file name
history and select the pseudo file

”
<no file selected>“

The check buttons
”
stop on failure“ and

”
stop on success“ enable ATCHs

possibility for aborting a simulation run6.
When running a simulation any ATCH box in the system under test will

5preliminary : Since there is no documented way of forcing such a selection box to synchronize
with its underlying data model, a file name successfully installed will not appear visibly in the
selection list until you close and open the mask, but is already entered into the data. So do not
wonder if you miss the name of the last file and get an

”
off by one“ error when selecting a file name

from the list ;-(
6preliminary : The check button

”
trace“ is for internal debugging purposes only.

9 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

3 Using ATCH

turn green as soon as the fact of passing the specification is established, and turns
red as soon as the system fails the specification.

The verdict (PASS or FAIL) and the verdict time is displayed in the message
line of the ATCH-blocks mask, and (preliminary :) in two dedicated output
fields in the mask.

3.3 Resolving of file names – Windows NT version

All files for ATCH (either specifications given to ATCH-blocks or data files,
see below) are identified either by paths or by pure file names.

Three flavours are supported :

• File names or paths starting with
”
./“ are interpreted relatively to the

”
current

directory“ of the
”
current drive“. This specification is not recommended .

• File names or paths starting with
”
〈Driveletter〉:/“ are interpreted as absolute

pathnames.
• All other file names or paths must not start with

”
/“ and are searched for in

all diretories listed in the path variable internal to MATLAB.

3.4 The ATCH API for Program Controlled Watchdog

Installation

There is a small API providing MATLAB functions for installation, control and de-
installation of ATCH blocks from the MatLab command prompt or any function
written in the MATLAB-language (

”
M-File“). The functions of this API are listed

in table 1 on page 11. The API and the GUI are7 fully compatible, i.e. it is possible
to install a ATCH-block using the API, modify its parameters via GUI, delete it
via API etc.

Please note that a subsystem must be given by it full path name relative to its
top level system. All functionalities and parameter interpretations are the same as
said above with the manual installation, and file names are resolved as described in
section 3.3.

The return values of the API functions are always starting with a pair of integer
and text string. The integer value 0(zero) denotes success, in which case the text
string is of no interest. All integer values 6= 0 indicate an error , and the text will
be set accordingly to an error description.

In addition the API contains some functions not related to a distinct block,
which are explained in situ in table 2 on page 12.

3.5 The ATCH Console for Controlling Multiple Predi-

cates from One File for One Subsystem

When a given ATCH file contains different predicates for a single (sub)system,
an

”
ATCH Console“ can be installed for switching on and off the evaluation of

the different predicates.
This is realized by automatic insertion and deletion of ATCH blocks.

7. . . should be ;-). . .

10 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

3.5 The ATCH Console for Controlling Multiple Predicates from One File for One
Subsystem

mwInstall (〈SubsystemName〉, 〈MWatchFileAndSect〉, 〈blockName〉)
⇒ [〈ErrorCode〉, 〈ErrorText〉, 〈MwBlockPath〉]

Installs a new ATCH-block with given name for given spec.file.

In case of success returns the full path of the newly created ATCH-
block.
If an empty 〈blockName〉 (a MATLAB array of length=0) is given, a
fresh name is supplied automatically.

mwRelink (〈MwBlockPath〉, 〈MWatchFileName〉)
⇒ [〈ErrorCode〉, 〈ErrorText〉]

Changes the task of the block to watch the given specification.
If the compiling of the specification results to an error, the blocks old
linkage is kept unchanged.

mwStopsim (〈MwBlockPath〉, 〈Integer〉, 〈Integer〉)
⇒ [〈ErrorCode〉, 〈ErrorText〉]

Sets the influence of the ATCH-block to the run of the simula-
tion : giving a value of

”
0“/

”
1“ as the first (second) parameter dis-

ables/enables the interruption of the simulation in case of fail (pass).
mwDeinstall (〈MwBlockPath〉)

⇒ [〈ErrorCode〉, 〈ErrorText〉]

Removes the ATCH-block.
mwGetverdict (〈MwBlockPath〉)

⇒ [〈ErrorCode〉, 〈ErrorText〉, 〈verdict〉, 〈verdictTime〉]

Returns the verdict and time of decision of the given ATCH-block
as delivered in the last simulation run.
The verdict is encoded as text string :

’FAIL’
’PASS’
’inconc’

The verdict time is encoded as MATLAB float value.
preliminary :
The special value 99999.99 is used to indicate a verdict recognized
past the end of a simulation run.

Table 1: The ATCH API for programmed control of blocks

11 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

3 Using ATCH

mwMaketemplate (〈SubsystemPrefix 〉, 〈Block〉, 〈FilePath〉)
⇒ [〈ErrorCode〉, 〈ErrorText〉]

Creates a new file with the given path and name, containing macro
definitions for all testable 〈ValuePoints〉 in the subsystem identified
by the concatenation [〈SubsystemPrefix 〉”/”〈BlockName〉].
All Ports and Output connectors of all blocks contained in this sys-
tem are enumerated. The definition of their identifiers is relative to
the given 〈SubsystemPrefix 〉, therefore appropriate for installing an

ATCH block at exactly this level.
mwGetsections (〈FilePath〉)

⇒ [〈ErrorCode〉, 〈ErrorText〉,〈Sectionlist〉]
Scans the given file and delivers a

”
cell array“ of all section names

contained in this file, ordered by their first appearance.
mwNewconsole (〈FilePath〉, 〈SubsystemPath〉)

⇒ [〈ErrorCode〉, 〈ErrorText〉, 〈FigureNumber〉]

Creates a new
”

ATCH Predicate Selection Console“ for the sub-
system with the given path and the file with the given name. The file
has to contain predicates relatively defined to this subsystem.
A new window (MATLAB

”
figure“ object) is created and displayed.

The figure number returned identifies this window when calling figure-
related MATLAB functions.

Table 2: The ATCH API related to Specification Files

An ATCH Console can only be created using the API (function

”
mwNewconsole“) and is realized as a MATLAB

”
figure“ object, i.e. a seperate

top-level window controlled by MATLAB.
An ATCH Console (see figure FEHLT) consists of a panel in which each line

corresponds to a
”
section“ in the file. Left to the name of the section a checkbox

can be found, to the right is a text area for displaying the status of the evaluation.
Below this panel there are some command buttons which provide the following

functionality:

• Button
”
Edit“ :

Calls the editor for the file.
• Button

”
Rescan File“ :

Rescans the file and updates the list of sections.
This should be used if, after editing the file, its contents have changed regarding
the set of section names, e.g. a new section has been entered. The file is re-
scanned and the list of sections adjusted accordingly.

• Button
”
Do Install“ :

Installs an ATCH block for each section on which a check mark is set, and
deinstalls all others.
This should be used before starting a simulation run. For all predicates which
could be compiled without error a new ATCH block is inserted and the
textfield containing the section name turns yellow. White name fields indicate
non-installed predicates.

• Button
”
Update Verdicts“ :

12 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Copies the verdicts from the ATCH blocks to the text area to the right of
the sections name and additionally signals the verdict by color.
This should be used after completion of a simulation run. The verdict is
printed right to the name textfield, and the color of the textfield is changed
according to the verdict.

• Button
”
Write Protocol“ :

A new protocol file is created or an existing protocol file expanded by an XML
encoding of the verdicts of the last simulation run.
The name of the protocol file is derived from the name of the attribute file in
an operating-system-dependent manner.
In the case of windows, where no multiple dots are allowed, we derive

. . .
<mwatchdir>/demo/sf car.mw

<mwatchdir>/demo/sf car mw results.xml

4 Structure of an ATCH Specification File

4.1 File Sections representing different ATCH Predicates

Figure 4 Syntax of the ATCH top level file structure.

〈mwatchFile〉 == 〈mwatchText〉

| 〈mwatchText〉? 〈fileSection〉+

〈fileSection〉 == #section 〈sectionName〉 (”,” 〈sectionName〉)∗

(”:”)? ”\n” 〈mwatchText〉 ”\n”
〈mwatchText〉 == 〈any text not containing “#section“ 〉
〈sectionName〉 == 〈any alphanumeric identifier, underscore “ “ may be used〉

Above the
”
language level“ an ATCH file may contain different

”
sections“,

see the grammar in figure 4. These are used to represent multiple predicates in a
single file, maybe sharing common definitions.

Each section begins with the keyword
”
#section“, followed by a comma seper-

ated sequence of section names. A section name is an arbitrary chosen identifier
consisting of digits, numbers or the underscore

”
“; it may begin with or consist

entirely of numeric characters.
Each file section extends up to the next #section keyword or to the end of

file, which ever comes first. Any predicate text selected by a section name is made
up from the concatenation of the file text preceding the first ”#section” keyword
(if present), and all file sections containing this section name in the section line.

please note : that the newline character ”\n” is significant, i.e. a section
line cannot expand over more than one text line, and no 〈mwatchText〉 may appear
in the same line as a ”#section” keyword.

A specification file may or may not contain #section keywords.
If not, no section must be selected whenever launching an ATCH box, and

all the contents of the file make up the specification.
If the file does contain a section keyword, a valid section identifier must be

given together with the file name whenever evaluating this file by ATCH.

13 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

5 The ATCH Language of Temporal Predicates

4.2 Comment lines

Comments are supported only on a one-line base : All characters between the char-
acter ”&” or the character pair ”//” up to the end of a line are treated as comments.

5 The ATCH Language of Temporal Predicates

The ATCH language allows to formulate temporal predicates based on a
”
Trace

Semantics“ :
Each term of an ATCH formula describes a

”
segment of time“, and the

combinators of the language are used to combine these segments.
Basic building block is the 〈InstPred〉 construct, which stands for any

”
time-

less“, instantaneous boolean predicate. It represents all segments of the trace in
which the predicate is fulfilled in every time instant belonging to the intervall.

A given trace fulfills the ATCH-specification iff at least one segmentation
of the test trace can be found, in which each segment fulfills one 〈InstPred〉, and
the order of the adjacent segments fulfills the semantics of the combinators applied
to the corresponding instantaneous predicates.

The instantaneous predicates are implemented by creating an invisible network
of simulink-blocks inside the ATCH-block; thus their evaluation is delegated to
MATLAB/simulink, and the exact semantics can be derived from their documenta-
tion.

The temporal combinators are evaluated by a .DLL, and their semantics are
described in more detail in the following.

5.1 Accessing simulation data via 〈TestPoint〉s

All predicates in an ATCH specification are built on observations of values, chang-
ing in time during the simulation run. In the grammar of our specification language
these values are identified by the nonterminal 〈TestPoint〉. The instantaneous pred-
icates mentioned aboce are made up watching these 〈TestPoint〉s.

As 〈testPoint〉 may serve :

• The name of a simulink block, immediately followed ba a slash (/) and an
Output Port number .
If the block has exactly one output port, this number and the seperating slash
may be omitted.
This numeric adressing can used to access output signals of instances of the
built-in primitive simulink blocks, the ports of which are not accessible by
name.

• The name of a simulink subsystem block, immediately followed ba a slash (/)
and the name of an Output Port.

• The name of a
”
signal“ or

”
line“ somewhere in the model.

Signals and blocks can be deeply buried in subsystems of the SSUT, in which
case they are named by giving the complete path (relative to the SSUT) seperated
by slashes. (Beware not to put blanks around these slashes, as otherwise they would
be recognized as

”
divide“ operators.)

14 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

5.2 Instantaneous Predicates

Any identifier starting with an alphabetic character and consisting only of
alphas, decimal digits and the special characters #, _, /, ., ’ and - can be written
down directly.

All other port or signal identifieres, e.g. containing exclamation marks or
blanks, have to be included in double quotes (”"”). With this notation nearly all
character combinations can be used. Only when using this notation there is a rather
primitive expansion mechanism to generate newline characters, since all character
sequences

”
\n“ are reposed by a newline char8.

In case that the name of one subsystem in a path contains special characters,
blanks or newlines, the whole path has to be included in double quotes. Beware that
no pruning of quoted strings is implemented, and (please note :) that some of the
built-in blocks of simulink contain blanks which are not visible because they appear
at the end or beginning of a line.

5.2 Instantaneous Predicates

The boolean expressions representing 〈InstPred〉s are either

1. directly used 〈TestPoint〉s, if the correspondig simulink port or signal is of type
boolean, or

2. 〈comparison〉s of arithmetic expressions built from numeric constants,
〈testPoint〉s and timed test data from MATLAB data files, i.e. 〈xy〉.mat files),
or

3. boolean expressions formed by the operators ”||”, ”<=>”, ”=>”, ”&&”, and
”∼” (increasing binding power) applied to the formers.

Numeric constants can be integer or floating points. Floating points can be
given in scientific notation. Sequences of digits not containing a decimal seper-
ator are recognized as integer values and cannot contain an exponential part.
please note : There is no

”
unary minus“ operator, but one minus sign can be

entered as first character of a numeric constant. So there is a difference between

”
5 - 3“, which is correct, and

”
5 -3“ which is not.

Arithmetic expressions are built either with the usual MATLAB-operators, or
by calling the library functions listed in table 3 on page 16.

5.3 Syntax and Semantics of the Temporal Combinators

On top of these instantaneous expressions (= 〈instPred〉) the language elements
describing sets of traces are built :

• A simple 〈instPred〉 statement matches all those (sub-)traces for which in each
time instance the given instantaneous predicate does hold.

• The predicate ANY matches all traces9.

8preliminary : It is not possible to use the character sequence
”
\n“ verbatim in an identifier,

because there is no sophisticated escaping mechanism.
9Remark for the reader familiar with the discussion of the semantics: Because of the

”
continuity

hypothesis“ the ANY seems to match the empty trace, but indeed it matches only
”
infinitively short“

subtraces of arbitrary content.

15 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

5 The ATCH Language of Temporal Predicates

diff ”(” 〈arithExpr〉 ”)”
Derivation of given signal

irgd ”(” 〈arithExpr〉 ”)”
Discrete integration of given signal
(Initial condition set to 0.0.)

abs ”(” 〈arithExpr〉 ”)”
Absolute value.

min ”(” 〈arithExpr〉(”,” 〈arithExpr〉)+ ”)”
max

Calculate min/max of list of signals.
sin ”(” 〈arithExpr〉 ”)”
cos tan asin acos atan atan2 sinh cosh

Trigonometric functions and inverses
delay ”(” 〈arithExpr〉”,” 〈arithExpr〉 ”)”

Delay the first signal dynamically; the duration of the delay is deter-
mined by the second signal
(ToBeDone: maxdelay/samplecount is set to default value, – add pa-
rameters !?)

shold ”(” 〈arithExpr〉”,” 〈boolExpr〉 ”)”
Sample-and-hold the former signal; re-sampling is triggered by the latter

memory ”(” (〈arithExpr〉 | 〈boolExpr〉) ”)”
Memorize the signal from the last simulation step.
Notice: The simulink documentation forbids to use this block together
with certain solvers (ode15s and ode113)

scope ”(” 〈integerConst〉”,” 〈integerConst〉 ”,” (〈arithExpr〉 | 〈boolExpr〉) ”)”
Send the given signal to one channel of an implicitly created multi-
channel scope device. The first 〈integerConst〉 determines the

”
pane“

of the scope, the second the
”
channel“ where to send the signal.

wspi ”(” 〈Ident〉 ”,”〈integerConst〉”)”
Creates a simulink

”
fromWorkspace“ block. 〈Ident〉 is used immediately

for the mask parameter
”
variableName“, and so its interpretation is

exclusively defined by simulink. No checks on the validity of this ident is
performed by ATCH! The 〈integerConst〉 gives the channel number
of this newly created device, the value of which is used as the value of
the expression.

file ”(” 〈Ident〉 ”,”〈integerConst〉”)”
Creates a simulink

”
fromFile“ block. 〈Ident〉 is used to identify the file,

which has to be of ”.mat” type. The rules for resolving file pathes are
the same as above (3.3).
The 〈integerConst〉 gives the channel number of this newly created de-
vice, the value of which is used as the value of the expression.

Table 3: List of supported MATLAB/simulink library functions

16 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

5.4 Auxiliary Language Constructs

From this simple semantic definition it is clear that ANY can only be useful
together with some combinators, e.g. as part of a

”
chopped“ sequence or

constrained by MIN or MAX.
• Any expression built with the

”
chop“ operator ”;” holds for those traces which

can (at some arbitrarily chosen point) be split into two segments, the first
satisfying the first formula, the second the second.

• Expressions (either simple or built with combinators) prefixed by MIN or MAX
match only those traces with given minimal or maximal length. The length
has to be given as real or integer constant.
please note : Expressions are not yet permitted here ;-(.

• Two or more expressions (either simple or built with combinators themselves)
combined with CASES. . . AND. . . AND. . . denotate the set of traces wich fulfill all
given predicates.
Expressions combined with CASES. . . OR. . . OR. . . denotate the set of traces wich
fulfill at least one of the given predicates.

• The REP prefix denotates sets of runs, each of which can be seperated into
arbitrary many sub-runs, each fulfilling the prefixed formula. This does not
include the empty trace. The REP prefix resembles the + construct known from
regular expressions.
The REP prefix can only be used on top of sequences built with the chop
operator ”;”, since the repetition of an instantateous predicate is idempotent
with the predicate itself, – a MAX constraint even simply vanishes when being
repeated.

• The OPT prefix can only be used beneath a sequence of segments built with the
chop operator ”;”. It denotes either the traces fulfilling the prefixed formula,
or the empty trace.
please note : that even if given no MIN constraint, the mere appearance of an
instantaneous predicate requires that this predicate is valid in some arbitrarily
small intervall in time. Each 〈instPred〉 can be seen as implicitly contained in
a

”
MIN ε . . .“ statement, with ε > 0.

The OPT operator permits this ε to be really equal to zero (0.0).
• The combinations OPT REP or REP OPT denote repetitions including the empty

trace, thus realizing the * construct known from regular expressions.
• The REPN prefix denotates those runs which can be divided into exactly n

segments, each of which fulfills the prefixed formula, where n is given as integer
constant10

please note : Expressions are not (yet) permitted here ;-(.

5.4 Auxiliary Language Constructs

5.4.1 Defining testdata

The statements of form

SET 〈testPoint〉 ”=” (〈arithExpr〉 | 〈boolExpr〉) ”;”

where 〈testPoint〉 has to be the path of a signal or an output port, changes the

10Since this construct is expanded in the compiler, and the primitive sequentialization interface
does not support sharing at the moment, the integer value should be not too large.

17 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

5 The ATCH Language of Temporal Predicates

SSUT by replacing the values sequence produced originally by those produced by
the given 〈arithExpr〉 or 〈boolExpr〉.

preliminary : The implementation of our model extractor, needed to
find the coordinates of the original signal line, is rather straightforward and
almost unacceptable slow.

preliminary : ATTENTION The information for undoing any SET com-
mand is not stored persistently. Please do not save a model containing a from tag
resulting from executing a SET expression.

5.5 The ATCH Macro Facility

As a means for abstraction the ATCH-language includes a versatile macro mech-
anism.

please note : that, as mentioned above, when evaluating an ATCH-file
with a given section name, the prefix of the file preceeding the first

”
section. . .“

line and all file segments the headline of which include the given section name will
be concatenated to form the predicate text for evaluation.

So it is possible to include all macros and definitions used by different predicates
in such shared sections.

The macro mechanism is characterized by these properties:

• It does not support recursion.
• It needs definition-before-use.
• It supports locally defined macros.
• It operates on syntactic elements, not on character level.

As you may have noticed, the grammar in figure 6 does contain the top level
syntax for defining macros by

”
LET 〈ident〉 ”=” 〈defBody〉“ etc., but neither the

syntax (1) for instantiating (
”
calling“) them, nor (2) for the 〈defBody〉 itself.

This is because (1) nearly every production of this grammar can be substituted
by an instantiation of an appropriate macro, and (2) a macro definition body is just
a normal ATCH-expression, where these same productions can be replaced by the
appearance of a macro parameter. It follows from this, that (3) also the arguments
of any macro call can be made of arbitrary derivations from these same productions,
as long as the macro call expands to a syntactically valid construct.

The grammar of macro definition and usage can be depicted as in figure 7.

5.5.1 Lexical Scopes and Shadowing

Since our macro mechanism permits nested macro definitions, the rules for resolving
lexical references have to consider the hierarchy of definitions. We follow the usual
approach that

”
later“ definitions override the

”
earlier“ ones, i.e. each lexical entity

is looked for by ascending the hierarchie starting at the place of application.
The precedence is as follows :

• When in a macro definition the highest precedence comes to the parameter
names.

• Thereafter it is looked for a macro definition of the next higher nesting level,
ignoring the name of the active macro itself.

18 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

5.5 The ATCH Macro Facility

• This is repeated until we left the scope of the highest macro.
• Then the identifier is looked up in the table of built-in functions (see table 3).
• Only those identifiers not matched with parameter names, macro names or

built-in library functions are treated as port or signal names.
But this should case no problems, as in praxi a port or outlet identifier causes
at least one slash (”/”), and slashes can easily be avoided11 in the name of
macros and macro parameters.

5.5.2 Resolving of macros

© <FIXME><FEHLT>MORE TO COME

11should be PROHIBITED!?

19 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

5 The ATCH Language of Temporal Predicates

Figure 5 The grammatical circles of the ATCH language

CASES
OR
AND

OPT
MIN
MAX

REP
REPN
REP OPT

{ }

;

CASE

|
<=>

&

<
>
==
~=

+
−

*
/

)(

, ,...

<ident>

<path>

<numeric>

()

()

20 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

5.5 The ATCH Macro Facility

Figure 6 Schematic Grammar of the ATCH Predicate Language.

〈mwatchTest〉 == 〈testCaseDef 〉∗〈localDef 〉∗〈mwatchSpec〉

〈testCaseDef 〉 == SET 〈testPoint〉 ”=” 〈expr〉 ”;”
〈localDef 〉 == LET 〈ident〉 ”=” 〈defBody〉

| LET 〈ident〉 ”(”〈ident〉 (”,” 〈ident〉)∗ ”)”
”=” 〈defBody〉

〈mwatchSpec〉 == 〈combination〉 EOF

| CASE〈sequence〉 EOF

〈combination〉 == CASES〈sequence〉(OR〈sequence〉)+

| CASES〈sequence〉(AND〈sequence〉)+

〈sequence〉 == 〈qualified〉(”;”〈sequence〉)∗

〈qualified〉 == MIN〈numConst〉〈primOrSeq〉
| MAX〈numConst〉〈primOrSeq〉
| OPT〈primOrSeq〉

〈primOrSeq〉 == 〈instPred〉
| 〈compound〉
| REP〈compound〉
| REPN〈integerConst〉〈compound〉
| REP OPT〈compound〉

〈compound〉 == ”{”〈combination〉”}”
| ”{”〈sequence〉”}”

〈instPred〉 == 〈boolExpr〉

〈boolExpr〉 == 〈boolExpr〉 (”&&”|”||”|”=”|”=>”|”<=>”) 〈boolExpr〉
| ”∼”〈boolExpr〉
| ”(”〈boolExpr〉”)”
| 〈testPoint〉 // if simulink-type of outport is

”
boolean“

| 〈comparison〉

〈comparison〉 == 〈arithExpr〉 (”<”|”<=”|”=”|”>”|”>=”) 〈arithExpr〉

〈arithExpr〉 == 〈arithExpr〉 (”+”|”-”|”*”|”/”) 〈arithExpr〉
| ”(”〈arithExpr〉”)”
| 〈numConst〉
| 〈testPoint〉 // if simulink-type of outport is

”
simple numeric“

| 〈fileData〉
| 〈simulinkMatlabFunction〉 ”(” 〈arglist〉 ”)”

// these functions are listed in table 3
〈argList〉 == 〈expr〉(”,”〈expr〉)∗

〈expr〉 == 〈boolExpr〉 | 〈arithExpr〉

〈numConst〉 == 〈integerConst〉|〈floatConst〉

〈testPoint〉 == (〈subsysName〉”/”)∗〈blockName〉(”/”〈portNumber〉)?

| (〈subsysName〉”/”)∗〈blockName〉”/”〈portName〉
| (〈subsysName〉”/”)∗〈signalName〉

21 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

5 The ATCH Language of Temporal Predicates

Figure 7 Schematic Grammar of the ATCH Macro Facility.

〈macroDefinition〉 == LET 〈ident〉 ”=” 〈defBody〉 ”;”
| LET 〈ident〉 ”(”〈ident〉 (”,” 〈ident〉)∗ ”)”

”=” 〈defBody〉 ”;”

〈defBody〉 == 〈timedExpression’ 〉
| 〈timedStatement’ 〉
| 〈arithExpr’ 〉
| 〈boolExpr’ 〉

〈timedExpression’ 〉 == . . . (like 〈timedExpression〉, but all referred nonterminals primed) . . .

| 〈parameterIdent〉
〈boolExpr’ 〉 == . . . (like 〈boolExpression〉, but all referred nonterminals primed) . . .

| 〈parameterIdent〉
〈arithExpr’ 〉 == . . . (like 〈arithExpr〉, but all referred nonterminals primed) . . .

| 〈parameterIdent〉
〈numConst’ 〉 == . . . (like 〈numConst〉) . . .

| 〈parameterIdent〉
〈testPoint’ 〉 == . . . (like 〈testPoint〉 , but all referred nonterminals primed) . . .

| 〈parameterIdent〉
〈macroCall’ 〉 == . . . (like 〈macroCall〉, but all referred nonterminals primed) . . .

| 〈parameterIdent〉

〈timedExpression〉 == . . . (like figure 6 above) . . .

| 〈macroCall〉
〈boolExpr〉 == . . . (like figure 6 above) . . .

| 〈macroCall〉
〈arithExpr〉 == . . . (like figure 6 above) . . .

| 〈macroCall〉
〈numConst〉 == . . . (like figure 6 above) . . .

| 〈macroCall〉
〈testPoint〉 == . . . (like figure 6 above) . . .

| 〈macroCall〉

〈macroCall〉 == 〈ident〉
| 〈ident〉 ”(” 〈macroArg〉 (”,” 〈macroArg〉) ∗ ”)”

〈macroArg〉 == 〈timedExpression〉
| 〈boolExpr〉
| 〈arithExpr〉
| 〈testPoint〉

22 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

6 Issues of Practical Operation

6.1 Principles of the MATLAB/simulink/ ATCH Interface

Whenever the user requests the launching of an ATCH-block with a specification,
the compiler is called and generates a MATLAB script.

This script is generated in a known, dedicated temporal directory, thus passed
to the MATLAB interfacing software.

Then this script is executed and (1) generates a
”
masked subsystem“ under the

ATCH-block. This subsystem realizes the calculation of the
”
instantanuos pred-

icates“, i.e. the arithmetic and logic expressions underlying the temporal predicate.
Data file imports are also realized

”
unvisibly“ in this subsystem.

The script (2) sets some parameters of the mask of the ATCH-block, thereby
transporting the count of input ports, and the coding of the

”
time grammar“

ATCH is going to parse.
Finally (3) the script really does modify the SSUT by adding

”
Goto“-blocks to

the signals which are used by the specification. If the feature of test data generation
is used, it furthermore adds

”
From“-blocks into the SSUT, thereby disconnecting the

original data source.
Whenever an ATCH-block is deleted or relaunched, all these manipulations

are reverted.
When a simulation is started, (4) the .DLL realizing the ATCH algorithm

reads some values from the block mask, decodes the serialized time grammar and
builts the data structures needed to evaluate the predicate given by the launched
specification.

6.2 Timing Considerations and Treatment of a
”
Final Ver-

dict“

In simulink it seems that the count how often the model function
”
mdlOutputs()“

ic called can vary with the kind of solver used to execute the simulation. Therefor
we implemented an

”
off-by-one“ discipline: the ATCH S-Function is called as

soon as the time stamp of this calling increases, and evaluates the values of the last
time of calling. So each verdict will be calculated one step behind the time when it
became valid (but of course semantically with the correct time stamp value).

This normally does not cause any problem, since these verdicts are a kind of
meta-information, which can be read (e.g. via API) after the simulation has ended.
Speaking strinctly some kinds of verdicts can only be calculated together with the
meta-information, that the simulation run is finished, e.g.

”
ANY ; p EOF“ needs

this information. So what you really read after the end of a simulation run with the
function getVerdicts() is the final verdict, – a verdict which is calculated under
the premise, that the simulation in finished.

So if you want to use the verdicts, which are given to the Aboth outports of
the ATCH block as boolean values, on the object level, e.g. connecting those
outputs to other blocks in some testbed, these final verdicts have to be calculated
in already in the very last step of the simulation run.

This in accomplished by activating the button
”
include final verdict“ in

the ATCH block’s mask.

23 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

6 Issues of Practical Operation

please note : that all mask values are copied from the state of the mask of
the block in the library MWatchLib whenever a new block is installed, so check and
adjust this

”
prototype“ mask.

6.3 Persistency

Any simulink-model containing ATCH-blocks can be stored to and read from
disk without any problems, even if those are

”
launched“ with a specification. The

MATLAB-file containing the compiled specification is only needed temporarily, while
executing the

”
compile & load“ command.

What should not be done is editing the
”
masked subsystem“ of the ATCH-

block or changing the value of the
”
gotoTag“-field of an ATCH-generated goto

or from-block, since this can disturb the mechanism of undoing the modifications.
preliminary : ATTENTION: The information for undoing goto blocks in-

serted due to a SET statement is not (yet) persistent, see 5.4.1.

6.4 Error Diagnosis

In the sequence of launching an ATCH-block with a certain specification there
are diverse stages at which different classes of errors can be recognized :

• . . . during compilation :
The compiler detects (of course) all syntactical errors. It detects some semantic
errors, e.g. minimal timings with a duration larger than a maximal timing on
the same expression, timing constraints less than or equal to zero etc.

• . . . during
”
loading“ of the compiled code :

Since the compiler has no knowledge of the model for which the specification
is compiled, all

”
port not found“ errors are detected when executing the com-

piler generated MATLAB-file. The same is true for
”
port number required“ or

”
library link not broken“ etc.

But since from the users point of view both phases seem to be a single activity,
this distinction causes no problems.

• . . . when starting the simulation :
Each simulink-model can contain ports and signals of boolean and of floating
point type. The somehow peculiar design of simulink detects type mismatches
of connections not before the simulation is started !
This is rather annoying and leads to the fact that the semantic error of class

”
type mismatch“ between signals and input ports in an ATCH-specification

can only signalled by simulink, and not before starting the simulation.
please note : Furthermore there is no (documented) way of determining the
count of channels stored in a (time-stamped) .MAT-file! So the error of using
a too large channel number in a file() function call will also be detected not
earlier than the start of the simulation.

24 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

7 Little Example and Tutorial

7.1 Example Text

Entering at the MATLAB command line the command

mwDemo (0)

opens a demonstration model from the MATLAB/simulink/stateflow distribution, and
installs an ATCH-console for applying the predicate file

<mwatchdir>/demo/sf car.mw

Here is the predicate file’s text :
Source Example 1

1 . . . // file : "<MWatchDir>\demo\sf_car.mw"

2 . . . // MWatch specification example for simulink(c)/stateflow(c) model "sf_car"

3 . . . // author : The MWatch Team (DC-FT3/TUB-UeBB)

4 . . .

5 . . . LET vspeed= "vehicle\nspeed" ;

6 . . . LET brake = "brake\nschedule" ;

7 . . . LET gas = "throttle\nschedule" ;

8 . . . LET gear = shift_logic/gear ;

9 . . . LET vsp’ = diff (vspeed) ;

10 . .

11 . . LET S (a,b,c) = scope (a,b,c) ;

12 . . LET S11 (a) = S(1,1,a) ;

13 . . LET S12 (a) = S(1,2,a) ;

14 . . LET S13 (a) = S(1,3,a) ;

15 . . LET S21 (a) = S(2,1,a) ;

16 . . LET S22 (a) = S(2,2,a) ;

17 . . LET S23 (a) = S(2,3,a) ;

18 . .

19 . . //==

20 . .

21 . . #section conflictingbrake:

22 . . // ACHTUNG AB einer gewissen groesse HAENGT sf_car !! 1200 geht zB NICHT

23 . . // OK : SET brake = 800 ;

24 . . // OK: SET brake = WSPI("[0 800]") ;

25 . . // NICHT MEHR OK SET brake = WSPI("[0 800; 15 1500]") ;

26 . . // SET brake = 1200 ;

27 . .

28 . . SET brake = wspi("[0 800]") ;

29 . . CASE ANY EOF

30 . .

31 . . //==

32 . . #section startThenBrake:

33 . . SET "throttle\nschedule" = wspi ("[0 60; 14.9 80;15 0;30 0]") ;

34 . . SET "brake\nschedule" = wspi ("[0 0; 15.2 0; 15.3 500 ; 30 500]") ;

25 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

7 Little Example and Tutorial

35 . . CASE ANY EOF

36 . .

37 . . //CASE wspi ("throttle\nschedule","[0 60; 14.9 80;15 0;30 0]") > -10

38 . . // && wspi ("brake\nschedule","[0 0; 15.2 0; 15.3 400 ; 30 400]") > -10 EOF

39 . .

40 . . //==

41 . . #section limits :

42 . . // speed is less than or equal to 110 mph, gear is less than 6,

43 . . // and acceleration is between -50 and + 50

44 . . CASE scope(2,1,vspeed) < 110 && scope(1,1,shift_logic/gear) < 6

45 . . && scope(1,2,vsp’) >= -50 && vsp’ <= 50 EOF

46 . .

47 . .

48 . . //==

49 . . #section shift_to_next:

50 . . // each gear shift does maximally ONE step up or down

51 . .

52 . . LET geardiff = scope(1,1,gear - memory (gear)) ;

53 . . CASE abs(geardiff) <= 1 EOF

54 . .

55 . .

56 . . //==

57 . . #section shift_pauses_0.5, shift_pauses_2.0:

58 . . // no two adjacent gear shifts are closer than t seconds.

59 . .

60 . . LET shifting = S12(S11(gear) ~= memory(gear)) ;

61 . . LET pause(t) = {OPT ~ shifting ; OPT REP {shifting ; MIN t ~ shifting} ;

62 . . OPT {shifting ; ~ shifting} }

63 . .

64 . . #section shift_pauses_0.5:

65 . . CASE pause(0.5) EOF

66 . .

67 . . #section shift_pauses_2.0:

68 . . CASE pause(2.0) EOF

69 . .

70 . .

71 . . //==

72 . . #section reverse_shift_pauses :

73 . . // no two adjacent gear shifts in opposite direction closer than t seconds.

74 . . // t = 4 should pass, t = 7 should fail.

75 . .

76 . . LET upshift = (gear > memory(gear)) ;

77 . . LET downshift = (gear < memory(gear)) ;

78 . . LET shift = upshift || downshift ;

79 . .

80 . . LET t = 7 ;

81 . . CASE REP { CASES REP {downshift ; ~shift} ; MIN t ~shift

26 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

7.1 Example Text

82 . . OR REP {upshift ; ~shift} ; MIN t ~shift

83 . . OR ~shift

84 . . } EOF

85 . .

86 . . //==

87 . . #section kickdown_downshift

88 . . // after a "kickdown" there has to be a downshift after

89 . . // a given maximal delay of t1.

90 . . // t1 = 0.3 should pass, t1 = 0.001 should fail,

91 . . // if test datas contains a kick-down.

92 . .

93 . . LET kickdown = diff(gas) > 100 ;

94 . . LET downshift = gear - memory(gear) < 0 ;

95 . .

96 . . LET t1 = 0.001 ;

97 . . CASE ~kickdown ; OPT REP {MAX t1 ANY ; downshift ; ~ kickdown } EOF

98 . .

99 . .

100 . //==

101 . #section kickdown_speed

102 . // after a "kickdown" speed has to increase by at least 10 percent

103 . // after a maximal delay of t2.

104 . // t2 = 1.5 should pass, t2 = 0.1 should fail,

105 . // if test datas contains a kick-down.

106 .

107 . LET t2 = 0.1 ;

108 . LET kickdown = diff(gas) > 100 ;

109 . LET kdspeed = shold(vspeed, kickdown) ;

110 . CASE ~ kickdown ; OPT REP {MAX t2 ANY ; vspeed > kdspeed*1.10 ;

111 . ~ kickdown } EOF

112 .

113 .

114 . //==

115 . #section shiftdown_forspeed

116 . // when shifting down WHILE ACCELERATING speed has to increase

117 . // by at least 10 percent after a maximal delay of t2

118 .

119 . // LET t2 = 0.1 ; // FAILS ! with brake pedal held : PASSES

120 . LET t2 = 3.0 ;// PASSES ! with brake pedal held : PASSES

121 .

122 . // LET downfs = (gear < memory(gear)) && vsp’ > 1.0 ;

123 . // GEHT NICHT HIER SIND JITTER ODER SO

124 . // LET downfs = (gear < memory(gear)) && vsp’ > 5.0 ;

125 . LET downfs = gear < memory(gear) && delay(S11(vsp’) ,0.2) > 1.0 ;

126 .

127 . LET shiftspeed = shold(vspeed, downfs) ;

128 . CASE ~ downfs ; OPT REP { MAX t2 ANY ; vspeed > shiftspeed*1.10 ;

27 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

7 Little Example and Tutorial

129 . ~ downfs }

130 . OPT MAX t2 ANY EOF

131 .

132 .

133 .

134 . //==

135 . #section shiftup_forspeed

136 . // when shifting up speed has to increase by at least p2 percent

137 . // after a maximal delay of t2

138 .

139 . LET upshift = gear > memory (gear) ;

140 . LET shiftspeed = shold (vspeed, upshift) ;

141 .

142 . LET pred(t2,p2) = {REP { ~ upshift ;

143 . OPT { MAX 2.0 ANY ;

144 . vspeed > shiftspeed * (100+p2) / 100 }

145 . } }

146 . CASES pred (2,12) AND pred (3,22) EOF

147 .

148 .

149 . //==

150 . #section brake_absolute :

151 . // If there is a break force > b1 then in given time t1

152 . // the speed has to be less than v1

153 .

154 . LET brktest (b1, t1, v1) =

155 . { REP { brake < b1 ;

156 . OPT {MAX t1 ANY ; vspeed < v1}

157 . }}

158 .

159 . CASES brktest (100,5,80) AND brktest (200,5,40) EOF

160 .

161 . //==

162 . #section brake_percent :

163 . // If there is a break force > b1 then in given time t1

164 . // the speed has to have fallen with p1 percent

165 .

166 . LET brktest (b1, t1, p1) =

167 . { LET cond = brake >= b1 ;

168 . LET brkspeed = shold (vspeed, cond) ;

169 . REP { ~cond ;

170 . OPT { MAX t1 ANY ; vspeed < brkspeed * (100-p1)/100 } }

171 . }

172 .

173 . CASES brktest (100,5,20) AND brktest (300,5,80) EOF

174 .

End Of Source

28 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

7.2 Explanations

7.2 Explanations

7.2.1

This source file can be executed very easily: Just enter MATLAB and type

mwdemo (0)

at the command prompt. The model
”
sf car“ will open, and so will a ATCH

Console linking this model to the source file.
Let’s have a look at this source file from the beginning :
The first lines up to the first #section entry are common to all sections and

contain some quasi
”
global“ definitions. In line 1/5 pp. just abbreviations are

introduced for some important ports.
The block names containing a

”
newline“ character have to be enclosed in double

quotes, so that the escape mechanism is applied. This is not necessary in line 1/8.
In line 1/9 a new signal named

”
vspeed’“ is generated by applying the built-in

differentiation block to the signal
”
vspeed“.

Lines 1/11 introduce macro definitions with parameters; these are used to make
the insertion of scopes into an expression less verbose. Here we also see that macro
expansions can make further macro calls.

Let us skip the next two sections and continue with the first predicate, which
can be found in line 1/41 in the section

”
limits“. Here just

”
instantaneos“ predi-

cates are tested, i.e. there are not timing constraints and all predicates have to be
fulfilled all the time.

Now you can acitvate the check box left to the name of the section and then
press the button labeled

”
Do Install“. An ATCH box will appear in the model

and a scope will be opened which presents the signals selected in the source text.
The color of the box should be

”
yellow“, indicating a launched but still

”
inconclusive

verdict“. You can move the box in the model around or resize it as you like. You can
even delete it manually and see all goto blocks being deleted, too, automatically.

If you double click the box the mask will pop up and you can e.g. ac-
tivate the abortion of the session as soon as the predicate fails by activat-
ing the check box

”
Stop on Failure“. If you select the box and select

”
E dit -> Look U nder Mask“ from the models menu you see the network into

which the source code predicates are compiled. Feel free to move and resize the
primitive blocks contained herein, but please do not delete connections or alter
names. Normally you will never need to look at these compiled devices, but it may
be fun having a look behind the scene.

Now start the simulation as usual and watch the box changing its color. After
the simulation run press

”
get Verdicts“ in the ATCH Console and the verdicts

will be copied and the colors of the name entry fields will change accordingly.
At last you can press the button

”
Write Protocol“ and you will find your

activities eternalized in a littel XML protocol in the file

<mwatchdir>/demo/sf car mw results.xml

29 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

7 Little Example and Tutorial

The next predicate
”
shift to next“ also works without temporal constructs,

but some timed specification is realized by the
”
memory()“ construct, which uses

a Simulink block for comparing the current value of gear with that of the last
simulation step, thus detecting gear shift events.

Nevertheless this predicate is still instantanuos from the ATCH point of
view. It simply says that the difference between the value of gear in two adjacent
steps must not be greater than one or less than minus one. One scope with one
pane and two channels is installed using the short-hand notation we introduced in
the common prefix of the file.

7.2.2

The predicates contained in the sections shift pauses 〈duration〉 are more inter-
esting : They macro pause(t) specifies that between two gear shifts there has to
be a pause of t time units (seconds). The sets of traces fulfilling this macro have to
be constructed as follows :

• At the beginning there may be an arbitrarily long interval where no gear shift
occurs (

”
OPT ~ shifting“, please notice the logical

”
not“ operator

”
~“).

The shifting is an instantaneous predicate defined in line 1/60, using the
matlab comparison operator

”
~=“, which is packed into a simulink block. This

generates a boolean signal from two numeric signals.
• Then a gear shift may occur, followed by an intervall of t seconds, in which

no shift occurs.

Please notice that a macro defining a set of traces has to enclose its body in
curly braces. Also the argument of REP, which must be a sequence of predicates
combined by the chop operator ”;” must be enclosed in curly braces.

The following two sections simply instantiate this macro with two different
durations. If you activate these predicate and start the simulation the first one will
succeed and the second one will fail.

Please note that this predicate is only fulfilled, if at the end of the simulation
there is also a pause of t after the last gear shift. If this is not intended, because of
the nature of the segment of test data, and if you want this test data even to end
with a gear shift, the predicate has to be altered like . . .

Source Example 2

1 . . . LET pause (t) = { OPT ~ shifting ;

2 . . . OPT REP {shifting ; MIN t ~ shifting } ;

3 . . . OPT shifting ; OPT ~ shifting }

End Of Source

Now the last gear shift can be followed by an arbitrarily short interval of non-
shift, or even happen in the very last trace sample.

The next predicate in section reverse shift pauses is a bit more special as
it compares gear shifts in opposite directions. The CASES combinator is used to
combine the three possibilities : Either no shift occurs at all (last case) or one or
more down shifts occur, followed by an interval of t seconds, in which no up shift
occurs, or vice versa.

30 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

7.2 Explanations

The predicate kickdown downshift beginning in line 1/87 first defines a cick-
down event by comparing the derivative of the throttle value with a certain threshold,
generating a boolean signal kickdown.

The temporal predicate has be be read as:
At the beginning there is no kick-down-event. Optionally this is followed by a

repeated sequence of one or more kick-down events followed by a downshift. The
sequence of kick-downs is limited to be of maximal t1 length.

Here we see a typical
”
idiom“ of these kinds of trace semantics: The kick-

down event(s) are not specified explicitely, but by an implied negation. Since all
subtraces described by

”
∼ kickdown“ must end as soon as kickdown gets true, the

following time segment must be interpreted as corresponding to the ANY segment !
In this subtrace there may be arbitrarily many changes of kickdownbecoming true
and false, but the first true phase starts the timer and requires the downshift to
follow after maximal t1 time units.

The section kickdown speed has the same structure. In the
”
deterministic“

part of the specification, i.e. in the formula which are evaluated independently from
their temporal context, some time-orientatin is introduced by the

”
sample-and-hold“

device. This is a block containted in the MWatchLib blockset and holds its first input
value as long as its second input is false and samples the current value if the second
input is true. So we memorize the speed valid at the time of the last kickdown and
propose that after t2 time units speed has to have increased by 10 percent.

Please note that expressions like
”
memory()“ and

”
sandh()“ are realized in the

static part, i.e. not reentrant, so that we can not refer to the vspeed of the first
kickdown parsed by the temporal formula, – this parsing is non-deterministic and
instantiated arbitrarily often, but there is only one network realizing the instantat-
neous predicates.

The next predicate shiftdown forspeed looks for the event of a downshift together
with increasing speed of the vehicle. Please note that we have to use a short delay
of the vspeed’ signal for technical reasons: The evaluation mechanism of simulink
seems to produce some

”
random“ noise when calculating hard changes of the throttle

value which can be seen nicely on the scope installed by this predicate.

7.2.3

The next predicates all have similar structure. The last predicate demonstrates
the use of local macro definitions and local instantiations of non-reentrant blocks
like shold(). As mentioned above these are only installed once and cannot be
evaluated non-deterministically, but of course they will be installed n times and
operate independently, if the macro which installs them is instantiated n times, as
it is the case in our example.

7.2.4

The first two sections demonstrate the generation of test data:
In section conflictingBrake the value of the brake signal is reposed by our

definition (a simulink
”
from Workspace“ block delivering a constant value of 800), but

the signal
”
throttle schedule“ remains untouched, so that a situation is simulated

where gas and brake are pushed simultanuosly.

31 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

A Embedding into MTest

please note : If the value for brake gets too large, this simulink model simply
hangs :-(

In section startThenBrake both signals are replaced in a more senseful manner:
A start and a full brake are simulated.

Please combine one of these predicates with one or more of the others to see if
the verdicts change accordingly. Of course predicates specifying the behavior of the
brake system can only work if the brake is used in the test data.

please note : When a test data is defined for a outport which is not connected
at all this is considered an error and the corresponding ATCH block will not
successfully be launched. This will be the case if both of the first predicates should
be tried to install. – the first will install successfully, the second then will fail,
because the port it wants to redefine is yet disconnected.

A Embedding into MTest

This section addresses users familiar with the MTest test environment by DC.
When running MTest and you have sucessfully

1. selected a model to test,
2. selected a subsystem to test,
3. selected a test sequence,
4. selected a singular test,
5. and opened (or created) the test bed,

then the menu entry

TestBed / Edit Watchdogs

will launch a ATCH Console for the system under test.
preliminary : Specification files are related to the single test, not to a test

suite or a model.
If such a specification file already exists for the current test (i.e. the file exists

in the directory containing the test data), the ATCH Console is launched with
this file.

If such a file does not exist , a template file will be created automatically con-
taining shortcut macro definitions for all visible 〈TestPoint〉s in the test bed. This
is done by calling the API function mwMaketemplate()from table 2 above.

If you want to reuse an existing predicate file from one testcase for another one,
you have to copy it manually between the respective directories and then maybe
adjust the text to your needs.

preliminary : ATTENTION the ATCH Console will not disappear au-
tomatically if the selection of test, test suite, subsystem or model is changed, but all
further operation on this console will result in some error. Simply close the console
window and activate the menu entry TestBed / Edit Watchdogs again to get a
new ATCH Console for the new setting.

32 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

