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1 Introduction to the ATCH Principles

0 The following text is an attempt of a small interactive tutorial, introducing several
aspects of the ATCH tool.

While trying to abstract from all theoretical issues, the author assumes that some
introduction into the underlying principles of the architecture can be helpful.

1 From a systematic point of view there are clear distinctions between the different
layers of

• the ATCH algorithm,
• the ATCH tool,
• and the ATCH language, – which itself consists of two(2) layers.

But since this paper tries to describe the operation of the tool from the practical
viewpoint, we mostly will neglect these distinctions, recurring to them only where
unavoidable.

• The kernel of ATCH is an algorithm for real-time evaluation of the con-
formance of a system’s behavior with a specification made up from temporal
properties.

• This specification is given using the ATCH language. The ATCH lan-
guage directly represents the trace semantics evaluated by the algorithm, i.e.
works without quantors or the necessity of declaring variables.

• The existing tool implemetation supports a direct simulation time interface to
the MATLAB/simulink simulation environment for evaluating specifications, a
GUI for interactive selection of specifications, and an API for program con-
troled operation1.

2 Since the current implementation of the tool works with MATLAB/simulink, for
sake of the user’s convenience the lower level of the ATCH language (containing
the so called

”
instantanuos predicates“, see below 41 pp. on page 13) follows closely

the syntax and semantics of the corresponding MATLAB und simulink operations2.

The upper level of the language, containing the syntactic constructs for combining
the instantanuos predicates to temporal trace specifications, is independent from
this underlying expression language.

1Currently we support MATLAB 5.3.1 and simulink 3.0.1 (that is Release 11.1)
2. . . which themselves are not always consistent w.r.t. each other!
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2 Basic language constructs

2 Basic language constructs

3 Each ATCH specification can be read und understood as a kind of
”
regular

expression“, which is well known from automata construction: Each specification
describes a

”
family“ of traces, i.e. a set of simulation runs, which fulfill the specifi-

cation.

The similarity to regular expressions comes from the fact that the specifications
describe the run of the system dia-chronuosly: The leftmost part of a (sequential)

ATCH formula describes the start of the system run, the next expressions describe
the next segments of realtime, etc., – the rightmost expression describes the required
behavior at the end of each run.

4 Also well known from regular expressions is the possibility of disjunction, i.e. the
specification of OR-connected alternatives.

5 Not found in regular expressions is the AND conjunction, i.e. the requirement for
a run to fulfill several predicates simultanuosly.

6 Each ATCH specification contains three layers of syntax and semantics:

1. Firstly the signals and output ports which shall be covered by the specification
(and thus observed during simulation time) have to be identified.

2. Then
”
instantanuos predicates“ are formulated, which must be met by the cur-

rent values of these signals and ports in certain time instances of a simulation
run.

3. At last these instantanuos predicates are combined to a temporal sequence
which must be met by the system’s behavior throughout the duration of a
complete simulation run.

7 For illustration here is an example with an indication of these three levels. This
example will be explained in detail in the following.

CASE shift logic/gear
︸ ︷︷ ︸

<= 3

︸ ︷︷ ︸

; shift logic/gear
︸ ︷︷ ︸

> 3

︸ ︷︷ ︸

EOF

︸ ︷︷ ︸

2.1 Applying ATCH Specifications to simulink Systems

8 In the current implementation an ATCH specification is applied to a simulink
model by (1) installing an ATCH function block into a simulink system, and (2)
identifying a specification for this block.
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2.2 Selecting Signal Values (PTOs)

9 Whenever a simulation of a model is run, all ATCH blocks which currently
exist in this model perform the conformance test between the model’s behavior and
the selected specification automatically.

10 The installation of an ATCH function block can be done program controled
or manually (by drag n’ drop out of the library). The further way of operation
however is identical.

11 An ATCH function block can be inserted also in subsystems of arbitrarily
deep nesting level, if they are not realized by unbroken library links.

12 The system immediately containing a certain ATCH function block is called
the corresponding

”
Sub-System Under Test“, or SSUT in the following.

13 This name comes from the fact that each ATCH function block can observe
the sequence of values on all signals and output ports which are contained in its
SSUT, either immediately, or in a subsystem of arbitrarily deep nesting level.

2.2 Selecting Signal Values (PTOs)

14 As mentioned above (see 6 ) the first decision when writing an ATCH spec-
ification is the identification of the signals which shall be subject to observation.

15 In the current implementation the values of named signals and of output ports

can be observed. Together they are called
”
Points of Test and Observation“, or

PTOs, in the following3.

16 Currently there is the restriction that only PTOs containing single values can
be observed, i.e. there is no access to matrix valued or complex signals.

17 PTOs are adressed in an ATCH predicate by giving their complete path names
relatively to the SSUT(=the immediately containing system) of the ATCH block
which is going to interpret the predicate.

18 As well-known from the simulink-API, a pathname of a port or signal consists
of components, all seperated by slashes

/

with no intervening blanks.

19 As known from simulink, all components of a PTO’s path name are case
sensitive.

20 The first components of the path name are the names of the subsystems con-
taining the PTO, from outermost to innermost. If the PTO is contained in the SSUT

3These are standard terms from the field of Protocol Conformance Testing, and we consider
them quite adequate.
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2 Basic language constructs

immediately, this sequence of names is just empty.

21 This prefix is followed either

1. by the name of a signal,
2. or by the name of a block and the name of the selected output port,
3. or by the name of a block and a small integer number, giving the number of

the output connector,
4. or by the name of a block whithout further specification, meaning the one and

only output of this block.

These components of the path name are also seperated by slashes.

The last method of selecting a PTO is of course only applicable if the block indeed
has only one single output.

The last two methods of selecting a PTO will mostly be used when observing one
of the built-in simulink function blocks, which mostly do not assign port names to
their outputs.

22 If all of the components of a path name are made up only from alphanumeric
characters and the underline character ” ”, the whole pathname corresponds to a
single identifier in the sense of the ATCH lexis and can be written directly in a
predicate’s text.

23 If one of the components of a pathname contains special characters (like ”+”,”?”,
”!”), blanks or even newline characters, the whole path must be included in double
quotes

" . . . "

24 With this second notation, all characters included in the double quotes are
considered part of the name, including leading, intervening and trailing blank char-
acters.

Furthermore the sequence

\n

can not be part of an identifier, but is interpreted as a newline character, which is
contained in the names of some predefined simulink function blocks4.

4Please note that some of the predefined simulink library blocks (perfidiously) contain blank
characters adjacent to newline characters. These blocks can only be adressed by finding out their

”
invisible name“. From the GUI this can only be done by activating the

”
change name“ function

and stepping with the cursor through the characters!
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2.3 Using this tutorial and the ATCH console

Table 1 Examples for valid path names of PTOs, if sf car.mdl is the SSUT.

1. By the name of a signal:
"vehicle\nspeed"
"transmission/turbine torque"

2. By the names of a block and of the selected output port:
Engine/Ne

"transmission/transmission\nration/Tout"

3. By the name of a block and a small integer number:
Engine/Sum/1

Vehicle/mph/1

4. By the name of a block whithout further specification:
Engine/Sum

Vehicle/mph

"Engine/engine + impeller\ninertia"

2.3 Using this tutorial and the ATCH console

25 This tutorial refers to the example model

sf car.mdl

contained in each MATLAB/simulink distribution.

After installation of ATCH5, just type

MWatchTutorial

at the MATLAB prompt, and this model will open, together with an ATCH

console6.

Furthermore the test input data (brake\nschedule and throttle\nschedule) are
adjusted for better fitting to our example specifications.

26 Table 1 shows some valid path names for the case that sf car.mdl is the SSUT,
ordered by the categories of supported forms as given in 21 .

27 The ATCH console popped up when typing ”MWatchTutorial” combines
the selected model ”sf car.mdl” with the specification file

<mwatchdir>/demo/mwtutorial.mw

5See Installation and User’s Guide.
6In contrast to simulink function block and system names, commands in MATLAB are not case

sensitive.
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2 Basic language constructs

which contains the texts of the following examples.

28 In the current implementation all ATCH specifications must be contained in
a disk file. This file is divided into sections, each section corresponding to one spec-
ification. The ATCH console displays one row for each section name contained
in the file, preserving their textual order7. Each such line contains a check box, the
section name, and the verdict delivered by the specification the last time it had been
evaluated.

29 Please activate the small checkbox beside the predicate name ”p00”, then click
onto the ”Do Install” button.

An ATCH function block assigned to the evaluation of the file section ”p00” will
be installed, together with a new scope object with four panes.

This installation of a corresponding ATCH function block is called launching of
the predicate.

The new ATCH function block thus corresponds to the text contained in the text
file as it is at the moment of launching.

30 ⊕ ⊕ ⊕ Launching of a specification will also be triggered whenever you
activate the ”compile and load” button of the ATCH function block’s mask,
see Installation and User’s Guide.

31 ⊕⊕⊕ Whenever a predicate is launched the following sequence is performed:

1. The ATCH compiler searches the file with the given name
2. The section with the given name is compiled into a temporary file named

”MWATCHcode.m”.
3. This file is executed for installing the internal signal processing network and

all goto- and from-blocks, as well as initializing the ATCH function block’s
mask with the serialized version of the specification.

32 ⊕⊕⊕ The directory where to put and find the temporary code file is determined
by a value of the mask of the configuration block in the ATCH library. If you note
strange effects on your specification, there may be an old file named ”MWATCHcode.m”
from another directory, which appears with higher priority in the built-in MATLAB
search path.

33 Now, please start the simulation, and resize and rescale the scope after the
simulation has finished.

34 If you click onto the ”Edit Specs” button, the MATLAB editor will be invoked
on the specification file. Look for the line

#section p00 :

7Since each section name can occur multiple times in a file, the corresponding text sections
being concatenated to form the specification, this sequence of section names actually reflects their
first appearance in the file, see Installation and User’s Guide.
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2.3 Using this tutorial and the ATCH console

and after this you will find the code which is responsible for displaying the value
history of some PTOs on the scope’s panels.

Please ignore all the syntactic constructs in this section except the path names of
the PTOs.

35 For each PTO which is mentioned in the specification, a simulink
”
goto-block“

has been installed automatically. These are placed in a constant distance from the
corresponding output connector. If you open the corresponding subsystems you will
find the goto-blocks of the PTOs of deeper nesting level.

36 If you mark the ATCH function block and select the ”Edit⇒Clear” menu
function (or simply press the delete-key) the function block will be deleted, as ex-
pected. But also all goto-blocks related to this ATCH function block will be
deleted automatically.

Please do not change the name or the tag value of such automatically created goto-
blocks, since this automatic deletion will not work any longer. But you can always
move them around, if appropriate, – maybe you detect a second one hidden under a
younger colleague, since two distinct ATCH function blocks observing the same
PTO will install two distinct goto-blocks.

37 ⊕ ⊕ ⊕ All goto- and from-blocks installed by ATCH have a
”
tag value“

starting with the character sequence ”MWATCHTAG”. Please be sure that no other
block uses such a tag value, – the results may be unpredictable.

38 If you activate the ”Do Install” function of a console, all ATCH function
blocks which had been installed by this console and do still exist, will be deleted,
with the same consequences as done manually. Afterwards the specifications with
a marked check-box are installed

”
from scratch“. Therefore you always may delete

ATCH function blocks manually without confusing the console.

39 Feel free to edit this section of the file8 by replacing the path names of the
PTOs by your own choices, but please do not alter the other syntactic components
of this section.

If you now save the file and press ”Do Install” again, either the altered file is
executed and you see the selected values on the scope’s panel when running the
simulation again, – or you get an error message, because there are typos in the new
path names.

40 Please note that after each editing of a specification file you must always (1)

save the file to disk explicitely and (2) press ”Do Install” again. The ATCH

tool will not be notified on alterations of already launched specification
files automatically.

8. . . as long as you can reconstruct it, – e.g. from the distribution ;-)
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2 Basic language constructs

Table 2 Basic arithmetic and logic operations

Taking arithmetic values (int or float) and yielding a new float value:

e1 * e2 Multiplication
e1 / e2 Division
e1 + e2 Addition
e1 - e2 Subtraction

Taking arithmetic values and yielding a logical value:

e1 < e2 Less-than comparison
e1 <= e2 Less-than-or-equal comparison
e1 > e2 Greater-than comparison
e1 >= e2 Greater-than-or-equal comparison
e1 = e2 Comparison for equality
e1 ~= e2 Comparison for inequality

Taking logical values and yielding a new logical value:

~ p Negation of a predicate
p1 && p2 Konjunction of two predicates (

”
and“)

p1 !! p2 Disjunction of two predicates (
”
or“)

p1 => p2 Implication
p1 <=> p2 Equivalence

Binding power: equal decreasing

Table 3 Commonly Used Symbols for Syntactic Categories

e arithmetic Expression
p instantanuos Predicate
d Duration constant (float or integer)
i Identifier
n integer constant
s complex Subformula
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2.4 Instantanuos Predicates

2.4 Instantanuos Predicates

41 The most simple form of predicates which can be checked by ATCH are
called instantanuos. These predicates refer to a

”
snapshot“ of the SUT, and make

propositions on the values of ports and signals found in such a snapshot.

No notion of time is involved in the formulation of such predicates.

Instantanuos predicates are the main building block, on top of which which all more
complicated ATCH predicates are constructed.

42 Instantanuos predicates can be thought of as
”
signals of type boolean“. This

signal has to be
”
true“ for the predicate to be fulfilled by a certain combination of

values.

In the following we will represent an instantanuos predicate by the symbol

p

43 A PTO which already has the simulink-type
”
boolean“ can directly be used as an

instantanuos predicate. This signal must be true for the corresponding predicate
to be fulfilled.

44 All PTOs with the simulink-type integer or float are treated uniformally: They
can be used in arithmetic expressions, deriving new values from the current values
of the PTOs9.

45 From all numeric values (i.e. immediately from PTO values or from values
derived from those by arithmetic expressions, or from numeric constants) a boolean
value must be derived by applying a relational operator to two of them.

46 From these boolean values, together with PTO values which sui generi are
of simulink-type boolean, further boolean expressions may be derived by applying
logical operators.

Table 2 lists all operators of these three categories. Please note that the
”
wording“

of these operators is determined by the usage in MATLAB/simulink.

47 ⊕⊕⊕ Please note that the ATCH compiler has no information concerning
the types of the PTOs as defined implicitely by the kind of function blocks they
emerge from.

Due to the somehow
”
historically grown“ architecture of simulink, there is not even

a type checking when a new connection is established. Typing errors will be notified
to the user not before the simulation does start.

Sorry for this, but this is due to simulink’s idionsyncratics. :-(

9Furthermore there are some MATLAB/simulink functions which are accessible from the
ATCH language. These will be introduced later, see 2.16.
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2 Basic language constructs

48 Concerning our example patch
”
sf car.mdl“ such an instantanuos predicate

could be

”
The number of the current gear is less than or equal to three(3)“

which can be a meaningful predicate for certain test cases.

But also it is possible to postulate. . .

”
The number of the current gear is greater than the current speed

divided by the throttle percentage plus fortyseven(47)“

which will not make too much sense.

49 In our example (sf car.mdl) the currently selected gear is indicated by the
value of the output ”gear” of the subsystem ”shift logic”.

The predicate mentioned above can therefore be formulated as . . .

shift logic/gear <= 3

50 The second predicate from above would be written

shift logic/gear > "vehicle\nspeed" / ("throttle\nschedule" + 47.0)

2.5 Invariant Properties

51 The most simple form of a temporal expression in the ATCH language consists
only of one single instantanuos predicate. It has the meaning, that this instantanuos
predicate must be fulfilled by all time instances of any given run which matches this
specification.

The syntactic construct in the ATCH language for
”
lifting“ an instantanuos pred-

icate p to be a temporal formula is simply

CASE p EOF

52 Writing

CASE shift logic/gear <= 3 EOF

is thus a complete ATCH specification, saying that in each instance of a run the
current gear must be less than or equal to three.

Such a specification can be accounted as the most simple form of a
”
temporal pred-

icate“, – indeed it is technically treated as such, – nevertheless it is nothing more
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2.5 Invariant Properties

than an
”
invariant“ of the SSUT, because the required property does not change

with time.

53 Please note that all ATCH keywords are case sensitive, – if you happen to
delete the ”CASE” when editing this example, please do not reconstruct it to ”Case”
or ”case”.

54 Please go back to the ATCH console and deactivate all checkboxes and ac-
tivate the checkbox next to ”p01”. No click ”Do Install” again and start the
simulation. As soon as the gear will raise above three(3) the specification is not
fulfillable any more and the ATCH function block will turn red.

55 ⊕⊕⊕ If you mark the ATCH function block and then select the simulink
menu function ”Edit/LookUnderMask” (or simply press ctrl-U), the signal process-
ing network constructed by the ATCH compiler for realizing your specification
will become visible.

From time to time it could perhapes be useful to have a look at this network,
or even place a

”
floating scope“ somewhere inside. If you even edit it, please

do not remove from- or goto-blocks, because the automatic deletion of the cor-
responding goto- and from-blocks will not work any more when deleting the con-
taining ATCH function block.

56 If you click on ”Edit Specs”, the editor will pop up again and you can alter
the predicate which follows the line #section p01 as you like. If you change the
numeric constant, the specification will fail more or less early when running the
simulation.

This is caused by the curve of the ”gear” signal as induced by the default input test
data. If you use predicate ”p02” instead of ”p01”, additionally a scope is installed
which shows the curve of ”shift logic/gear”.

57 Be reminded that after each alteration to the specification text you must re-
launch the corresponding ATCH function block explicitely, as described above in
40 .

58 ⊕⊕⊕ Every single ATCH function block has the ability to influence the
run of a simulation by aborting it, in case of conformance as well as in case of failure:

• If you double-click on the ATCH function block, a simulink-style mask

should pop up for this block.
• Then activate the checkbox in the near to ”Stop on Failure ?”,
• and click ”OK” (the mask vanishes) or ”Apply”(the mask stays open).

When starting the simulation again, the failure of the specification will stop the
simulation run, popping up an error message window.

59 Please replace the integer constant in section p01 with a value high enough,
e.g.
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2 Basic language constructs

CASE shift logic/gear <= 100 EOF

This specification will be fulfilled at the end of each simulation run, and the
ATCH function block will finally turn green.

This
”
passed“ verdict however will not be fixed until the end of the simulation run.

This is (of course) because the trace data can fail to fulfill the invariant even in the
very last moment of the simulation run.

2.6 Simple Temporal Properties, Sequentialization

60 The invariant properties considered in the last section contained only one instan-
tanuos predicate, which had to be fulfilled by all instances of the whole simulation
run.

Now we introduce the first really
”
temporal“ specification by simply dividing the

trace of the whole run into subtraces, each of which is characterized by an instanta-
nuos predicate of its own.

To express the sequentialization of conditions, the central operator is the
”
chop“

operator, denotated by a semi-colon

;

and sequences of instantanuos predicates are written using the pattern

CASE p1 ; p2 ; . . . ; p2 EOF

61 If we want to express that the simulation run of our SSUT must start with a
gear less than or equal to three, but then may behave arbitrarily, we could write

CASE shift logic/gear <= 3 ; 1 < 2 EOF

Since 1<2 is always true, this ATCH predicate expresses exactly what we want:
The whole run has to begin with a sub-section in which shift_logic/gear <= 3

holds, after that the system may behave arbitrarily, since the truth of 1 < 2 does
not depend on its behavior, – fortunately ;-)

62 The wording of this predicate is definitive correct, but things like
”
1<2“ will

probably be confusing to the reader. So we better use the special keyword

ANY

which stands for each arbitrary behavior of a system. So now we can better write
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2.6 Simple Temporal Properties, Sequentialization

CASE shift logic/gear <= 3 ; ANY EOF

which is semantically the same as the property above in 61 .

63 Please note that (as mentioned above in 53 ) all ATCH keywords are case

sensitive, – writing ”any” or ”Any” will let the tool search for a signal with this
name and does not denote the special keyword.

64 Please alter section ”p01” (or ”p02”) accordingly (by inserting the character
sequence ”; ANY”), re-install the corresponding ATCH function block (by acti-
vating the checkbox and clicking ”Do Install” in the console), and run the simu-
lation. The ATCH function block will turn green almost immediately , because
the positive verdict is fixed as soon as the final ANY is reached, – which is the case
immediately after the leading ”shift logic/gear<=3” has been verified for the first
simulation step of the system.

65 The time instance in which the tool fixes the
”
verdict“ on the simulation can

be seen by clicking onto the ”Get Verdicts” button in the console. Doing this all
verdicts of all predicates for wich an ATCH function block is currently installed
will be copied into the corresponding line of the console’s display.

66 ⊕⊕⊕ If you
”
look under the mask“ of the ATCH function block again, as

explained in 55 above, you will notice that the
”
patch“ built up by the ATCH

compiler is the same as before.

Indeed only the evaluation of the basic instantanuos predicates contained in a spec-
ification (i.e. the

”
lower level“ of the ATCH language) is delegated to simulink,

by constructing the appropriate signal processing network and generating boolean
signals.

The logic (and secret ;-) of ATCH is contained in the .DLL which realizes the non-
deterministic evaluation of the

”
higher level“ of the ATCH language, operating

only with functions from time to boolean as inputs.

67 Of course the syntactic elements introduced so far can be used with identical
semantics in arbitrary combination, – a property which is called

”
compositionality“.

Please make some experiments like

CASE ANY ; shift logic/gear <= 3 EOF

which succeeds if the trace ends with a sub-segment in which the gear value is ≤3,
independent from the precedent behavior of the system.

68 Also a typical pattern is presented by the specification

CASE ANY ; shift logic/gear <= 3 ; ANY EOF

which requires, that sometimes, – at an arbitrarily chosen time instant, – there
starts a non-empty segment which fulfills the predicate gear≤3. So this pattern
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2 Basic language constructs

corresponds to the
”
eventually“ operator ( � ) from classical temporal logics, –

while simply writing CASE p EOF corresponds to the
”
always“ operator ( ).

69 Please verify that

CASE ANY ; shift logic/gear > 3 ; ANY EOF

succeeds as well, fixing the verdict as soon as possible.

Whereas

CASE ANY ; shift logic/gear > 4 ; ANY EOF

does fail , but not until the end of the simulation: The SSUT is given the chance to
succeed up to the very last moment of its run:

Up to the very last moment the trace data could still belong to the first ANY segment,
reaching the middle and last segment with the last sample step of the simulation
run.

70 Here is another typical pattern of an ATCH specification:

If you want to express that the gear may be larger than three, but only in a middle
segment of the whole run, and only for a limited period of time, you may write :

CASE shift logic/gear <= 3 ; ANY ; shift logic/gear <= 3 EOF

This example demonstrates a typical style of writing with ATCH: The desired
behavior is specified by a kind of negation.

Since the keyword ANY stands for an arbitrary behavior of the SSUT and since we
claim for the gear being ≤3 in the first and last segment, only the middle segment
would allow a gear larger than 3, because it does not impose this restriction.

71 The above specification allows the SSUT to change the gear to a value larger
than three(3), but does not enforce this behavior, – the gear may stay low, if the
SSUT wishes so.

Futhermore, the SSUT may switch to and fro a larger gear arbitrarily often, as long
as all sub-traces where the gear is large together fit into this free middle segment.

If we want to express that the gear must cross this limit, and must do this exactly
once , we have to write a far more restrictive specification:

CASE shift_logic/gear <= 3 ; shift_logic/gear > 3 ;

shift_logic/gear <= 3 EOF

72 The formulation for switching the gear at least once over this limit, but otherwise
aribtrarily often in the middle of the run is . . .

18 markuslepper.eu

 

http://markuslepper.eu
http://www.worldcat.org/search?q=


2.7 Simple Macros (without Parameters) used as Abbreviations

CASE shift_logic/gear <= 3 ; shift_logic/gear > 3 ; ANY ;

shift_logic/gear <= 3 EOF

73 ⊕⊕⊕ If you look now install predicate ”p03”, watch the scope displaying the
trace of the gear value and compare it to the time instant when

CASE ANY ; shift_logic/gear > 0 ; ANY ; shift_logic/gear = 1 ;

shift_logic/gear = 2 ; ANY

EOF

becomes true.

This will happen as soon as the gear value only
”
touches“ the value 2. The ATCH

algorithm always assumes that – if a value required by an instantanuos predicate is
reached in only one time instance, there is always a small interval of time

”
around“

this instance in which the predicate holds throughout. Because the rest of the
specification only requires ”ANY”, the whole specification is considered as fulfilled
immediately.

74 ⊕ ⊕ ⊕ Furthermore we see that the time intervall in which the gear actually
has the value 1 is

”
used“ for four different segments, for the initial ANY-segment,

for the condition gear> 0, for the next ANY-segment, and for the segment requiring
gear=1.

The ATCH semantics require for the chop operator ”;” only, that there exists at

least one segmentation of the actual trace of values. The question,
”
which of these

segmentations has actually been chosen by ATCH“ cannot be answered, – the
ATCH algorithm calculates the existance of one or more possible segmentations,

and does not make such a decision, which indeed would be totally arbitrary w.r.t.
the semantics.

2.7 Simple Macros (without Parameters) used as Abbrevi-
ations

75 With the predicate of 71 it is somehow inconvenient and error-prone that the
same predicate must be typed three times, – twice positve, once negated.

So the
”
macro definition“ feature of the ATCH compiler can be applied here with

some benefit to abstract a complex condition (or an arithmetic expression) into one
single identifier.

The syntactic patterns are

LET i = p ;

LET i = e ;
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where i stands for an arbitrary identifier chosen by the user, which should be selected
not to

”
shadow“ the name of any accessed PTO (or needed built-in function, see

below 2.16).

The symbols p and e shall indicate that you can abstract from instantanuos predi-
cates as well as from arithmetic expressions.

Together with the operator for logical negation
”
~“ this version of 71 is much more

readable:

LET lowgear = shift_logic/gear <= 3 ;

CASE lowgear ; ~ lowgear ; lowgear EOF

2.8 Specifying Minimal Durations of Sub-Traces and of the

Validity of Predicates

76 Of course with temporal specifications a central deserve is to specify the dura-

tions a certain property (1) must minimally be fulfilled, or (2) may maximally be
used for defining a subtrace.

For this sake the ATCH language provides the syntactic constructs

MIN d p

MAX d p

Here p indicates one single instantanuos predicate10, and d stands for a numeric
constant11, giving a duration in seconds.

The MAX prefix will be discussed in the next section.

77 The MIN prefix assigns a minimal duration value to a subtrace. Only these
segmentations of the total trace are valid, in which the sub-trace corresponding to
this sub-formula has the required length.

If this sub-formula is an instantanuos predicate p (as it is in all examples of this
section) the proposition that the corresponding subtrace has a length of minimally
d implies, that this predicate is valid for at least the given duration.

Consider (and execute!) the following specification:

CASE MIN 2.0 shift_logic/gear <= 3 ; ANY EOF

10As we will see later, all constructions, e.g. sequences of subtraces combined with the chop
operator ”;” and even more complex ones, may be prefixed by a MIN/ MAX specification.

11No expressions supported here at the time, sorry ;-(
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2.8 Specifying Minimal Durations of Sub-Traces and of the Validity of Predicates

This specification requires that the whole trace can be divided in two subtraces,
such that in the first the given predicate holds, and that this first trace lasts at least
2.0 seconds.

Positively spoken: After the start of the simulation the value of gear must be ≤3
for at least 2.0 seconds.

In the typical way of
”
negative formulation“ this also means, that

”
not earlier than

2.0 seconds after system start the gear may be larger than three“.

78 When using specification p02 and watching the curve of the gear value, it is
easy to see that the specification

CASE MIN 10.0 shift_logic/gear <= 3 ; ANY EOF

will fail.

79 Because of this
”
negative meaning“ the consequences of a MIN prefixed formula

therefore also may be related not to the prefixed expression, but to the following

subtrace:

CASE MIN 10.0 ANY ; shift_logic/gear > 3 ; ANY EOF

Here the
”
positive“ formulation hardly makes sense:

”
For the first 10.0 seconds or

longer the system may behave as it likes to, and then the gear must be larger than
three, – followed by any behavior.“

We hope the true meaning of this formula becomes clear when switch to the
”
model

theoretic“ level, i.e. treat the formula as a regular expression and look at the possible
sequences of subtraces it describes (can produce / can consume) :

The trace data fulfills this specification if and only if it is possible to split the
total trace into three segments, the first of which must be last at least 10.0 seconds,
the second must have a gear value larger 3, and the last is arbitrary.

With this specification three situations can arise, depending on the trace data, which
are depicted in figure 1.

The effect of the specification could be re-formulated as
”
Sometimes after the first

10.0 seconds the gear must be > 3“.

Or:

”
The gear must be > 3 in some time interval, but the first 10.0 seconds do not

count.“

This comes from the fact that at least the first 10.0 seconds are
”
consumed“ for

the first sub-formula; the first segment of the segmentation
”
eats up“ the first 10.0

seconds (or more), and then, in the next segment, the condition must hold.

80 The price of this
”
direct denotation of trace semantics“ is obvious:
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Figure 1 Possible Segmentations with the MIN formula from paragraph 79
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2.9 Specifying Maximally Allowed Durations of Sub-Traces

You have to get used to it.

The benefits are not so obvious, but existent: you need not use variables or quantors,
learn a block-oriented syntax, deal with lexical scopes and name clashes, etc.

81 The same formulation can of course be used concerning the end of the trace:

CASE ANY ; shift_logic/gear > 3 ; MIN 10.0 ANY EOF

means, that the gear has to be >3 somewhere more than 10.0 seconds before the sim-
ulation ends (because the last 10.0 seconds are consumed for the last sub-segment).

82 Another example, which now should be self-explaining :

LET lowgear = shift_logic/gear <= 3 ;

CASE lowgear ; MIN 3.0 ~ lowgear ; lowgear EOF

requires that in some middle segment of the whole trace the gear must be > 3 for
at least 3.0 seconds.

2.9 Specifying Maximally Allowed Durations of Sub-Traces

83 The MAX prefix works in analogy to the MIN prefix, as it defines the duration a
subtrace of an allowed segmentation may maximally last.

As seen above, a MIN prefix of an instantanuos predicate p implies, that p is valid
for minimally the given duration. The corresponding

”
dual“ statement is not valid.

The sentence
”
A MAX prefix of an instantanuos predicate p implies, that p is valid

for maximally the given duration.“ IS WRONG , – cf. the different wordings of the
section titles.

This may first be a suprise, – we hope it is understood after reading this section.

84 Let’s consider the following example and look at the two possible cases of trace
data depicted in figure 2 :

CASE MAX 2.0 ANY ; shift_logic/gear > 3 ; ANY EOF

Translated verbatim into the model language we get, that . . .

”
All traces are valid which can be divided into three segments: In the fist segment

the system behaves arbitrary, but this segment may last maximally 2.0 seconds; then
there is a segment in which the gear is larger than 3; the rest is arbitrary again“

This again can be translated to
”
normal language usage“ e.g. as . . .
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Figure 2 Trace Data with Possible and Impossible Segmentation for the MAX formula
from paragraph 84
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2.9 Specifying Maximally Allowed Durations of Sub-Traces

”
All traces are valid, in which the gear is larger than 3 not later than 2.0 seconds

after system start“.

This should be clear: As ANY allows the system to do anything, but MAX 2.0 ANY

allows this only for maximally 2.0 seconds, and since this segment is followed by a
segment where gear must be >2, then this instantanuos predicate must be true not
later than the maximal extension of the first segment can reach.

85 This example also should clarify, that
”
MAX d p“ gives the time (d) a given

instantanuos predicate (p) can maximally be
”
used“ or

”
considered“ for building a

segment. It does not constrain the duration of the validity of the p itself: Otherwise
a formula like MAX d ANY could never be fulfilled, since ANY is always valid.

86 A MAX prefixed p adjacent to an unconstrained ANY therefore never makes sense:
As soon as the time allowed for the MAX-segment is exhausted, we put all the rest
into the ANY segment and get a valid segmentation.

So the specification

LET lowgear = shift_logic/gear <= 3 ;

CASE MAX 2.0 lowgear ; ANY ; MAX 2.0 lowgear EOF

is totally equivalent to

CASE lowgear ; ANY ; lowgear EOF

87 If one of the following examples uses lowgear, please assume that the line

LET lowgear = shift_logic/gear <= 3 ;

is only left out for shortness.

88 Useful is the MAX construct by applying again a kind of
”
negation“ compared to

”
common sense“ usage of language :

CASE lowgear ; MAX 3.0 ANY ; lowgear EOF

Since we claim for the gear being ≤3 in the first and last segment, only the middle
segment would allow a gear larger than 3, because it does not impose this restriction.

Since this middle section can maximally have the length 3.0 seconds, we have ex-
pressed that the gear may never be larger than 3 for more than this duration.

Concerning the test data trace there are principally three different cases, depicted
in figure 3:

In case a) there are infinitively many possible segmentations, which enclose the
interval in which the gear is >3 in the middle segment, which corresponds to the
”ANY” formula. Please note that this segment may extend beyond the critical points
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Figure 3 Possible Segmentations with the MAX formula from paragraph 88
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2.10 Comprehensing Sub-Traces

where gear<=3 becomes false, and that it needs not
”
eat up“ the whole 3.0 seconds.

The figure tries to indicate this graphically.

The opposite is true in cases a) and b): We have to shift the middle segment as
far as possible into the future, e.g. let it start when the first segment must end,
because its condition is no longer true. But even then it is not possible to find a
valid segmentation, because the middle segment has to end after 3.0 seconds and
the condition of the following segment is violated at some time instance.

89 The above specification allows the SSUT to change the gear to a value larger
than three(3), but does not impose this behavior. Futhermore, the SSUT may switch
to and fro a larger gear arbitrarily often, as long as the earliest and the latest time
instance at which the gear is >3 both fit into the ANY segment.

90 If we want to express that the gear may only once cross this limit, we have to
write a more restrictive specification (cf. 71 above) :

CASE lowgear ; MAX 3.0 ~ lowgear ; lowgear EOF

2.10 Comprehensing Sub-Traces

91 As seen above in in 72 the formula

CASE lowgear ; ~ lowgear ; ANY ; lowgear EOF

expresses, that the trace data must start and end with a gear value ≤3, but that
there is an intervall in between in which the gear must change at least once to be
>3, but maybe more oftenly.

If we want to put a maximal duration constraint on this interval, the specification
of which is itself a sequential composition of two predicates, we use the syntactic
construct for defining sub-traces. This is done by enclosing the components of the
subtrace in braces :

{ . . . ; . . . }

Now we can write

CASE lowgear ; MAX 3.0 { ~ lowgear ; ANY } ; lowgear EOF

The whole subtrace corresponding to the formula contained in {. . . } may not last

longer than the given duration, that is: The interval in which the gear may take the
value >3 must not be longer than three seconds, and starts with such a value.
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W.r.t. the testdata the same three cases can occur as with the simple form
”MAX 3.0 ANY” from paragraph 88 , which are shown in figure 3. A difference
is only case a), where the middle segment now has to begin as late as in the other
cases.

92 The subtrace construct and its fully compositionality gives the ATCH lan-
guage their expressiveness. A typical example is

CASE MAX 5.0 { MIN 2.0 lowgear ; ~ lowgear } ; lowgear EOF

The first two seconds have to be assigned to the first (sub-)segment in which lowgear

holds. But the segment corresponding to the sub-formula must last at most 5.0
seconds. That means:

”
The gear must be >3 exactly once, not earlier than 2.0 seconds after system start.

5.0 seconds after system start it must be low again.“

93 Another pattern :

CASE MAX 5.0 MIN 2.0 lowgear ; ~ lowgear ; ANY EOF

. . .means . . .

”
The first time the value of gear is >3 must happen not earlier than 2.0 and not

later than 5.0 seconds after system start.“

94 Another pattern :

CASE MAX 5.0 { MIN 2.0 lowgear ; ~ lowgear } ; ANY EOF

. . .means . . .

”
The first time the value of gear is >3 must happen not earlier than 2.0 and not

later than 5.0 seconds after system start.“

95 Another pattern :

CASE MAX 5.0 { MIN 2.0 lowgear ; ~ lowgear } ; ANY EOF

2.11 Optional Segments and Optional Sub-Traces

96 As subtrace of a sequential ATCH formula which is not preceded by a MIN

constraint must nevertheless be existent. If such a subtrace – as in all our examples
so far – contains an instantanuos predicate, there must be at least

”
one moment“ in

which this predicate is true. Technically this corresponds to one
”
sample point“ of

the simulation run, in which this predicate is true.
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2.11 Optional Segments and Optional Sub-Traces

One could say that each predicate (occuring in a sequence) is implicitely prefixed
by a

”
MIN ε“

. . . ; px ; . . . ≡ . . . ; MIN ε px ; . . .

This ε may be as small as necessary, but px has to be fullfilled somewhere12.

If we want to specify a formula for a sub-segment which may occur, but does not
need to, we have to use the keyword for declaring a subformula and its corresponding
subtrace as optional :

OPT s

97 With our example the way of operation of OPT can be seen if we use an instan-
tanuos predicate definitively not fulfilled, like

CASE ANY ; OPT shift_logic/gear < -7 ; ANY EOF

This specification succeeds, since the middle segment, preceded by OPT, needs not
to be present at all in the actual trace data.

98 Let’s recapitulate the patterns we found up to now for the different kinds of
allowances we gave to the gear for being larger than 3.

CASE lowgear EOF

=⇒ not allowed at all.

CASE lowgear ; ANY ; lowgear EOF

=⇒ arbitrarily often.

CASE lowgear ; ~ lowgear ; lowgear EOF

=⇒ exactly once (cf. 71 ).

CASE lowgear ; ~ lowgear ; ANY ; lowgear EOF

=⇒ at least once (cf. 72 ).

Now we can also specify . . .

CASE lowgear ; OPT ~ lowgear ; lowgear EOF

=⇒ at most once (i.e. once or never).

99 This can be combined with MIN and MAX constructs arbitrarily, i.e. our language
is fully compositional.

An interesting case is

12This way of writing is for convenience: whenever the user writes an instantanuos predicate,
he/she normally wants to express that this predicate is fulfilled. Semantically it is not quite
orthogonal and requires the additional keyword ”OPT”, but otherwise the sepcifications would be
quite unreadable, because everywhere a ”MIN ε” would have to appear!
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CASE lowgear ; OPT MIN 3.0 ~ lowgear ; lowgear EOF

Here the gear may stay low all the time, if the SSUT wishes to. But if it crosses
the boundary, then it has to stay at least 3.0 seconds in a higher gear.

100 Do not mix this up with

CASE lowgear ; MIN 3.0 OPT ~ lowgear ; lowgear EOF

which is just identical with

CASE lowgear ; MIN 3.0 ~ lowgear ; lowgear EOF

The
”
option“ is no option: ”MIN” d s requires that s lasts at least d timeunits.

This forbids to leave out the subtrace ~ lowgear, which would result to an
”
empty

trace“. The length of an empty trace is 0.0, which is less than 3.0 and does not
match the MIN constraint.

The example 99 before is the dual case: ”OPT” s allows all traces allowed by s, plus
the empty trace (length=0.0) additionally . So there was really an option13.

2.12 Macros used as Abbreviations For Sequences

101 So the
”
macro definition“ feature of the ATCH compiler allows not only an

abbreviated notation for predicates and expressions, as shown above in 75 ff.,but
also for whole sequences.

The syntactic pattern is

LET i = { s } ;

We could write things like

LET lowgear = shift_logic/gear <= 3 ;

LET lowdriving = { lowgear ; OPT MAX 3 ANY ; lowgear } ;

CASE MAX 7 lowdriving ; MIN 15 ~ lowgear ; MIN 5 lowdriving EOF

. . . specifying (a) that during a
”
lowdriving“ periode the SUT switches to a higher

gear at most once for at most 3 time units, — and (b) that the SUT initially performs
for at most 7 time units such a lowdriving behavior, than drives in a high gear
for at least 15 time units, and finally becomes lowdriving again for at least 5 time
units.

13There is still a bug with ”CASES { OPT p1 ; OPT p2 } AND p3” !!
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2.13 Repetition of Subtrace Specifications

2.13 Repetition of Subtrace Specifications

REP { s }

102 Suppose we want to allow the SSUT to switch to a higher gear arbitrarily often,
but only for a small duration, let’s say 3 seconds.

This can be written like

CASE REP {lowgear ; OPT MAX 3 ANY} EOF

103 Now we want to describe the SSUT’s behavior more precisely: The SSUT may
change to a

”
higher“ gear arbitrarily often, but in the middle of each run it must

switch to a higher gear for a longer period.

LET lowgear = shift_logic/gear <= 3 ;

LET lowdriving = REP {lowgear ; OPT MAX 3 ANY} ;

CASE lowdriving ; MIN 5 ~ lowgear ; lowdriving EOF

104 If we want to express, that the SSUT has to end the simulation run in a low
gear, the formula above does not suffice, because the

”
lowdriving“ segments may

end in a higher gear. There are two possible variants:

LET lowgear = shift_logic/gear <= 3 ;

LET lowdriving = REP {lowgear ; OPT MAX 3 ANY} ;

CASE lowdriving ; MIN 5 ANY ; lowdriving ; lowgear EOF

105 . . . or alternatively

LET lowgear = shift_logic/gear <= 3 ;

LET lowdriving = REP {lowgear ; OPT MAX 3 ANY ; lowgear} ;

CASE lowdriving ; MIN 5 ~ lowgear ; lowdriving EOF

REPN n { s }
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106 The REPN construct takes an integer constant , which gives the count of rep-
etitions. By combining it with the OPT construct we can e.g. specify a maximal
number of occurances of a predicate, as in

LET lowdriving = { REPN 3 {lowgear ; OPT MAX 3 ANY} ; lowgear }

CASE lowdriving ; MIN 5 ~ lowgear ; lowdriving EOF

2.14 Disjunction of Sub-Formulae

107 Disjunction of two ATCH trace specification is done by the syntactic con-
struct

{ CASE s1 OR . . . OR sn }

108 Please not that if a disjunction (or conjunction, see below) appears at the top
level of a specification, the leading keyword

”
CASE“ is omitted, so that the top level

syntax appears as

CASES s1 OR . . . OR sn EOF

109 The meaning of disjunction can easily be taken over from the world of regular
expressions: A specification which is the disjunction of two or more ATCH-
formulae is fullfilled by the union set of the solutions of all alternatives.

Please notice the significant difference between the semantics (i.e. the set of fulfilling
traces) of these both formulae:

CASES lowgear OR speed > 120 EOF

CASE lowgear || speed > 120 EOF

The latter is fulfilled by all traces, in every instance of which the logical disjunction
is true, i.e. one of the predicates

”
lowgear“ or

”
speed > 120“ is true.

The former but is fulfilled only by those traces which fulfill lowgear in their very
first instance and continue to fulfill this predicate up to and including the very last

instance, and those who do the same w.r.t. the predicate
”
speed > 120“

So the first specification implies that (at least) one of the instantantious predicates
must evaluate constantly to true for the whole trace, while the latter allows the
values of the p change arbitrarily often, as long as the boolean disjunction evaluates
to true.

110 But the real meaning and importance should not become clear with this simple
(and artificial) example, but in the complicated case, when combining sequences by
the temporal-Or.
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2.14 Disjunction of Sub-Formulae

The following specification says that the SUT shall either be lowdriving, i.e. touch-
ing a higher gear only for a short duration, or otherwise be driving in higher gears
for a longer period of time.

LET lowgear = shift_logic/gear <= 3 ;

LET lowdriving = { REP {lowgear ; OPT MAX 3 ANY ; lowgear} }

LET phase = { CASES lowdriving OR MIN 14 ~ lowgear }

CASE phase ; phase ; phase EOF

. . . which expands to . . .

LET lowgear = shift_logic/gear <= 3 ;

LET lowdriving = { REP {lowgear ; OPT MAX 3 ANY ; lowgear} }

CASE { CASES lowdriving OR MIN 14 ~ lowgear } ;

{ CASES lowdriving OR MIN 14 ~ lowgear } ;

{ CASES lowdriving OR MIN 14 ~ lowgear } EOF

. . . which expands to . . .

LET lowgear = shift_logic/gear <= 3 ;

CASE { CASES REP {lowgear ; OPT MAX 3 ANY ; lowgear}

OR MIN 14 ~ lowgear } ;

{ CASES REP {lowgear ; OPT MAX 3 ANY ; lowgear}

OR MIN 14 ~ lowgear } ;

{ CASES REP {lowgear ; OPT MAX 3 ANY ; lowgear}

OR MIN 14 ~ lowgear } EOF

111 In these situations a combination with REP and REPN seems senseful:

LET lowgear = shift_logic/gear <= 3 ;

LET lowdriving = { REP {lowgear ; OPT MAX 3 ANY ; lowgear} }

CASE REPN 3 { CASES lowdriving OR MIN 14 ~ lowgear } EOF

. . . or similar . . .

CASE REP { CASES lowdriving OR MIN 14 ~ lowgear } EOF

112 With REPN/REP inline notation can be even more readable:

LET lowgear = shift_logic/gear <= 3 ;

CASE REPN 3 { CASES REP {lowgear ; OPT MAX 3 ANY ; lowgear}

OR MIN 14 ~ lowgear } EOF
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113 ⊕⊕⊕ As soon as temporal disjunction of instantuos predicates is embedded
into a REP construct, it is not more powerful than a simple

”
logical“ or.

This comes from the fact the the REP construct must be applied to a sequence

construct, and not to an instantanuos predicate or any disjunction of those.

CASE REP { CASES lowgear OR speed > 120 } EOF

. . .means exactly the same as . . .

CASE lowgear || speed > 120 EOF

114 ⊕ ⊕ ⊕ It is the outer
”
REP“, which levels the difference. The following

formulae are not identical:

CASE REPN 3 {CASES lowgear OR speed > 120} EOF

CASE REPN 3 { lowgear || speed > 120} EOF

The latter means exactly the same as . . .

CASE lowgear || speed > 120 EOF

because, if this (logically or-ed) condition holds all the time, then there must be (an
infinite number of) possible segmentations into three subtraces, in each of which the
condition holds.

The first formula but imposes additionally a rather complicated restriction, requiring
that the

”
responsibility of being continuosly true“ may maximally switch two times

from one instantanuos predicate to the other, — in other words: That there is a
possible semgentation into at most three segments, during each of which (at least)
one of the two instantanuos predicates must be continuosly true.

115 ⊕⊕⊕ Consider further that also sequencing becomes equipotent to temporal
OR and logical OR, as soon as OPT is used:

CASE REP { OPT lowgear ; OPT speed > 120 } EOF

. . . really means the same as . . .

CASE OPT REP { CASE lowgear OR speed > 120 } EOF

. . . which — as seen above — is the same as14 . . .

CASE OPT lowgear || speed > 120 EOF

14The following line is for illustration of semantics only and not valid ATCH source, since a
top-level OPT is rejected by the compiler.
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2.15 Conjunction of Sub-Formulae

2.15 Conjunction of Sub-Formulae

{ CASES s1 AND . . . AND sn }

116 A specification which is the conjuntion of two or more ATCH-formulae is
fullfilled by the set intersection of the solutions of the sub-formulae.

In contrast to disjunction there is no corresponding notion of conjunction in the
world of regular expressions.

117 The most simple application of the AND construct is just as a short hand notation
for the repeated use of an instantanuos predicate:

LET gear = shift_logic/gear ;

LET speed = "vehicle\nspeed" ;

CASES gear=1 ; gear=2 ; gear=1 AND speed<30 EOF

. . . simply means the same as . . .

CASE gear=1 && speed<30 ; gear=2 && speed<30 ; gear=1 && speed<30 EOF

118 A higher order of complexity but is reached by combining two (or more) se-
quences with the AND construct15:

CASES gear=1 ; ANY ; gear=1 AND ANY ; speed>=30 ; ANY EOF

. . .matches all traces which (1) start and end with gear=1, and (2) reach speed>=30

anywhere.

Please note that there is no specified relation between the
”
chop points“ (as deno-

tated by the semicola) of the two sub-formulae.

2.16 MATLAB and simulink library functions

For the denotation of meaningful (instantanuos) predicates it is convenient, or even
necessary, that the ATCH language permits access to some built-in MATLAB and
simulink functions.

15In deed the efficient implementation of the temporal conjunction is the main achievement
realized by the ATCH algorithm.

It is of central importance due to a role invisible to the user: All duration constraints on
comprehensive sequences are realized by transforming them to a conjunction of the pure sequence
(without timinig constraing) and an simple ANY carrying the duration constraint.
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Table 4 List of supported MATLAB/simulink library functions

abs ”(” 〈arithExpr〉 ”)”
Absolute value.

min ”(” 〈arithExpr〉(”,” 〈arithExpr〉)+ ”)”
max

Calculate min/max of list of signals.
sin cos tan asin acos atan atan2 sinh cosh

”(” 〈arithExpr〉 ”)”
Trigonometric functions and their inverses

diff ”(” 〈arithExpr〉 ”)”
Derivation of given signal

irgd ”(” 〈arithExpr〉 ”)”
Discrete integration of given signal
(Initial condition set to 0.0.)

delay ”(” 〈arithExpr〉”,” 〈arithExpr〉 ”)”
Delay the first signal dynamically; the duration of the delay is deter-
mined by the second signal
(ToBeDone: maxdelay/samplecount is set to default value, – add pa-
rameters !?)

shold ”(” 〈arithExpr〉”,” 〈boolExpr〉 ”)”
Sample-and-hold the former signal; re-sampling is triggered by the latter

memory ”(” (〈arithExpr〉 | 〈boolExpr〉) ”)”
Memorize the signal from the last simulation step.
Notice: The simulink documentation forbids to use this block together
with certain solvers (ode15s and ode113)

scope ”(” 〈integerConst〉”,” 〈integerConst〉 ”,” (〈arithExpr〉 | 〈boolExpr〉) ”)”
Send the given signal to one channel of an implicitly created multi-
channel scope device. The first 〈integerConst〉 determines the

”
pane“

of the scope, the second the
”
channel“ where to send the signal.

wspi ”(” 〈Ident〉 ”,”〈integerConst〉”)”
Creates a simulink

”
fromWorkspace“ block. 〈Ident〉 is used immediately

for the mask parameter
”
variableName“, and so its interpretation is

exclusively defined by simulink. No checks on the validity of this ident
is performed by ATCH!
The 〈integerConst〉 gives the channel number of this newly created de-
vice, the value of which is used as the value of the expression.

file ”(” 〈Ident〉 ”,”〈integerConst〉”)”
Creates a simulink

”
fromFile“ block. 〈Ident〉 is used to identify the file,

which has to be of ”.mat” type.
The 〈integerConst〉 gives the channel number of this newly created de-
vice, the value of which is used as the value of the expression.
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2.17 Generating
”
Events“ from Discrete or Continuos Signals

These are listed in table 4.

The first group just performs
”
instantanuos“ calculations on some

”
instantanuos“

data.

The second group is more insteresting, since these library functions perform time-

related processing of their input signals. In combination with the ATCH con-
structs for temporal trace specification they offer powerful specification possibilities,
which will be discussed in section 2.17.

The third group onyl realizes some
”
technical“ interfaces to the rest of the MATLAB

system, allowing to import test data from the
”
workspace“ or from a file.

2.17 Generating
”
Events“ from Discrete or Continuos Sig-

nals

119 For the following considerations we assume a semantics based on a continuos

notion of time. A continuos signal A(t) is defined as usual by the property that

∀ t0 • l-limt→t0
A(t) = r-limt→t0

A(t) = A(t0)

Such a signal is depicted in figure 4 A.

A discontinuos signal B(t) can be defined as a signal with a
”
jump“ or

”
gap“. At

a certain time instance tX a new value B(tX) is taken, but for all time instances
before tX (i.e. tX − ε for aribtrary small ε) the value is different.

∃ w > 0.0 • abs ( l-limt→tX
B(t) − B(tX) ) ≥ w

A discrete signal C(t) can be defined as a discontinuos signal in which there is a
non-empty interval of time between each two points of discontinuity, and which takes
a constant value during these intervals:

∀ t1, t2 • t1 < t2 ∧ C(t1) 6= C(t2) =⇒ ∃ t3
•t3 > t1 ∧ ∀t |t1 < t < t3 • C(t) = C(t1)

The signal gear in the preceding examples is such a
”
discrete“ signal.

120 In the simulink context a discrete function can be created by applying a rela-
tional operator to a continuos signal.

So figure 4 C shows the signal wich is derived from A(t) by applying

LET C = A > vX
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Figure 4 Generating Discrete
”
Events“
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2.17 Generating
”
Events“ from Discrete or Continuos Signals

121 All functions, continuos as well as discontinuos, are evaluated by the simulink
execution model on different, unknown time instances. The only thing we propose
is Non-Zenoism, i.e. that time advances and that for any time instance t (which lies
in the inner interval of the total simulation time!) there is a simulation step which
realizes a time instance > t. This step is preceeded by only a finite number of steps.

Therefore the set of evalution instances lying before tX is finite, therefore there is
always a last evaluation step before the point of discontinuity. Also there is always
a first step, in which the current time is larger or equal to tX .

Since a discrete signal (as defined above) does not change around its points of
discontinuity, we can be sure that a derived signal like

LET D = memory ( B ) - B

differs from zero(0.0) only in a single simulation step, namely the first step after tx,
— see figure 4 C.

These kinds of signals, which take a specific value for a single step of the simu-
lating machine, and which take another

”
neutral“ value for all steps immediately

surrounding this time instance, can be called
”
events“.

Please note that by introducing this notion of event, i.e. by using the built-in
simulink function memory(), we step over to a totally different world of semantics
compared to all preceding discussions, indicated in figure 4 by using a different time
axis T ∗.

Now the internal steps of the simulink execution machine become part of the
”
visible“

semantics, since we know and take into consideration the fact that an
”
event-like“

signal takes its
”
non-neutral“ value only for one single execution step.

122 Fortunately this conceptual distinction does not affect the ATCH evaluation:
ATCH treats events like any other condition and assumes a non-empty interval

”
around“ this simulink evalution step, during wich the condition (representing the

event) does hold.

So we van define event-like signals as in . . .

LET gear = shift_logic/gear ;

LET noshift = gear - memory(gear) = 0 ;

LET shiftdown = gear - memory(gear) < 0 ;

LET shiftup = gear - memory(gear) > 0 ;

CASE noshift ; shiftup ; MIN 5.0 noshift ; shiftdown ; noshift EOF

. . . which matches all traces with exactly two gear shifts, one upshift followed by one
downshift, both seperated by at least 5.0 time units.

123 Unfortunately the
”
discrete character“ of the gear signal, and the resul-

tung
”
event character“ of the shiftup etc. is pure conceptual and not known to
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ATCH.

So a sequence like

CASE noshift ; shiftup ; shiftup ; noshift EOF

does really mean the same as

CASE noshift ; shiftup ; noshift EOF

Both match to arbitrary many shift events, as long as they appear in adjacent
simulation steps.

As seen by the ATCH semantics, all the
”
coming true“ of the event-like signal in

adjacent simulink steps are just one single segment, during which the corresponding
instantanuos predicate holds.

We know that there must be a non-empty idle interval between two gear shifts, —
but as soon as you start the sf car model with the wrong solver selected, there are
many shifts in the first evaluation step.

So to specify that there must be more than one event, we have to seperate the
predicates explicitely by their negation:

CASE noshift ; shiftup ; noshift ; shiftup ; noshift EOF

124 We can incorporate this
”
interval of constant value“ explicitly into our definition

of the event:

LET geardiff = gear - memory(gear) ;

LET noshift = geardiff = 0 ;

LET upshift = {geardiff = 1; MIN 0.1 noshift }

LET downshift= {geardiff = -1; MIN 0.1 noshift }

Now we can write

CASE noshift ; shiftup ; shiftup EOF

thereby specifying two distinct shift events to occur.

2.18 Delegation of Non-Nondeterministic Calculations to
simulink

125 Since ATCH operates in the world of non-determinism, it hardly makes any
sense to

”
feed back“ signals generated by ATCH into the deterministic world of

a running simulation.
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2.19 Parametrized Macros and Local Macros

But contrarily the basic expressions of many temporal predicates are time related
or time dependent, but still deterministic. This is the case for all expressions which
depend only on the signal flow produced by the SUT, not on the temporal context.

These predicates can be realized using the library functions mentionend above.

Some examples:

126

LET speed = "vehicle\nspeed" ;

LET gear = shift_logic/gear ;

LET shiftup = gear - memory(gear) > 0 ;

LET shiftupspeed = shold (speed, shiftup) ;

Here shiftupspeed memorizes the current speed at the time of the last upshift
event.

127

LET speed = "vehicle\nspeed" ;

LET highaccel = delay(speed, 2.0)*1.1 < speed ;

LET highaccel1 = highaccel && ~ memory (highaccel) ;

Here highaccel is an boolean signal, indicating that the speed has increased in the
last 2.0 timeunits by more than 10 percent.

highaccel1 is an event type signal, indicating all time instances (which are simulink
evaluation steps) at which highaccel switches from being false to being true.

2.19 Parametrized Macros and Local Macros

128 The denotation of more complex specifications requires appropriate means of
abstraction. The macro mechanism of the ATCH language, as introduced above
in paragraph 75 , offers such means by the mechanism of parametrization.

The following example specifies that each each trace starts with a gear ≤ 3, and
that each upshift to the third gear has to be followed by a segment of at least 1.2
time units in which no shifts occur:

LET gear = shift_logic/gear ;

CASE REP { OPT gear < 3 ;

OPT { MIN 1.2 gear = 3 ; gear >= 3 }

} EOF

Now we can abstract this specification into a parametrized macro, and instantiate
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it multiple times for specifying similar conditions for other gear levels:

LET gear = shift_logic/gear ;

LET gear_up_pause (pgear, pdura) =

{ REP { gear < pgear ;

OPT { MIN pdura gear = pgear ; gear >= pgear }

} }

CASES gear_up_pause (2, 2.2)

AND gear_up_pause (3, 1.2) EOF

129 It may be useful to introduce local abbreviations inside the definition of a macro
body, i.e. to define macros local to a macro definition, like in . . .

LET gear = shift_logic/gear ;

LET gear_up_pause (pgear, pdura) =

{ LET islower = gear < pgear ;

REP { islower ;

OPT { MIN pdura gear = pgear ; ~ islower }

} }

CASES gear_up_pause (2, 2.2)

AND gear_up_pause (3, 1.2) EOF

Of course these macros could be again parametrized.
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