tScore Makes Computers and Humans Talk About Time

Markus Lepper^a Baltasar Trancón y Widemann^{ab}

^a<semantics/> GmbH

^bUniversität Bayreuth

Sound und Performance Bayreuth 4.-7.10. 2012

markuslepper.eu

Lepper, Trancón y Widemann tScore Makes Computers and Humans Talk About Time

What Is tScore?

2 tScore Context

- Computer-Compatible AND Human-Readable Time-Based Notation Is Needed
- Existing Notations Are Not Computer-Compatible

3 tScore Design Principles

- tScore Text Format Definition
- tScore, Generic Building Blocks

4 tScore Application

- Demonstration: Concrete Usage of tScore Currently
- Concrete Usage of tScore Future Plans

What Is tScore? Context Design Principles Application

What is tScore?

tScore is

a text format

for denotating arbitrary time-related structures.

markuslepper.eu

Lepper, Trancón y Widemann tScore Makes Computers and Humans Talk About Time

What Is tScore? Context Design Principles Application

What is tScore?

tScore is

a text format

and the corresponding processing software framework

for denotating arbitrary time-related structures.

A common ${computer \\ human}$ readable and writable language

for denotating arbitrary parameter ranges

in arbitrary time domains

is strongly desired !

(A concrete composition project as motivation :)

Unification of CWN and electronic control parameters in one single human and computer readable score.

Existing (commercial/academic) systems lack flexibility/adaptability. NOT due to "bad programming", but due to lacks in preparatory analysis.

This analysis is a genuin application of informatics. (I.e. computing science)

(A concrete composition project as motivation :)

Unification of CWN and electronic control parameters in one single human and computer readable score.

Existing (commercial/academic) systems lack flexibility/adaptability.

NOT due to "bad programming", but due to lacks in preparatory analysis.

This analysis is a genuin application of informatics. (I.e. computing science)

(A concrete composition project as motivation :)

Unification of CWN and electronic control parameters in one single human and computer readable score.

Existing (commercial/academic) systems lack flexibility/adaptability.

NOT due to "bad programming",

but due to lacks in preparatory analysis.

This analysis is a genuin application of informatics. (I.e. computing science)

(A concrete composition project as motivation :)

Unification of CWN and electronic control parameters in one single human and computer readable score.

Existing (commercial/academic) systems lack flexibility/adaptability.

NOT due to "bad programming", but due to lacks in preparatory analysis.

This analysis is a genuin application of informatics. (I.e. computing science)

(A concrete composition project as motivation :)

Unification of CWN and electronic control parameters in one single human and computer readable score.

Existing (commercial/academic) systems lack flexibility/adaptability.

NOT due to "bad programming", but due to lacks in preparatory analysis.

This analysis is a genuin application of informatics. (I.e. computing science)

(A concrete composition project as motivation :)

Unification of CWN and electronic control parameters in one single human and computer readable score.

Existing (commercial/academic) systems lack flexibility/adaptability.

NOT due to "bad programming", but due to lacks in preparatory analysis.

This analysis is a genuin application of informatics. (I.e. computing science)

Informatics is a philosphical discipline. Informatics is applied ontology, by a (re-)constructive approach.

• For what purpose?

- automated performance (sequencing)
- automated transformation / generation of temporal data
- computer aided analysis
- documentation
- (multiple) type setting
- In which domain?

Organizing which material?

- light control
- video cue lists
- kinetic sculptures / robots
- stage performance
- music
- (every other thinkable time-related structure)

- For what purpose?
 - automated performance (sequencing)
 - automated transformation / generation of temporal data
 - computer aided analysis
 - documentation
 - (multiple) type setting
- In which domain?

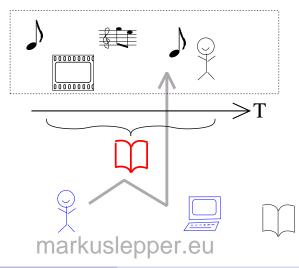
Organizing which material?

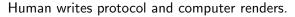
- light control
- video cue lists
- kinetic sculptures / robots
- stage performance
- music
- (every other thinkable time-related structure)

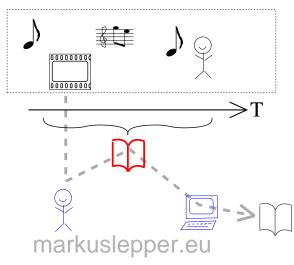
- For what purpose?
 - automated performance (sequencing)
 - automated transformation / generation of temporal data
 - computer aided analysis
 - documentation
 - (multiple) type setting
- In which domain?

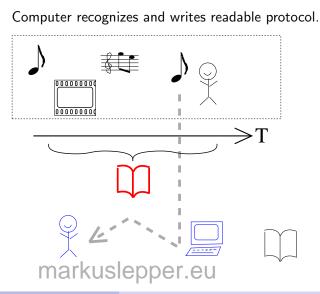
Organizing which material?

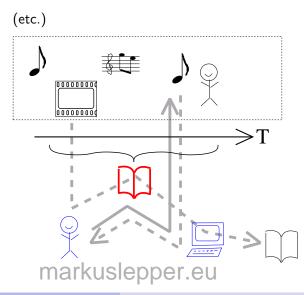
- light control
- video cue lists
- kinetic sculptures / robots
- stage performance
- music
- (every other thinkable time-related structure)

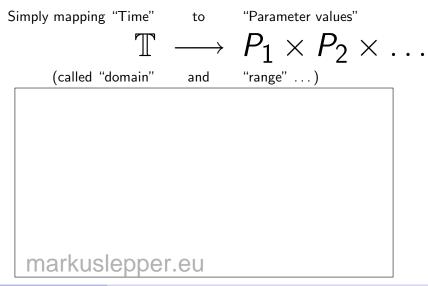

- For what purpose?
 - automated performance (sequencing)
 - automated transformation / generation of temporal data
 - computer aided analysis
 - documentation
 - (multiple) type setting
- In which domain?

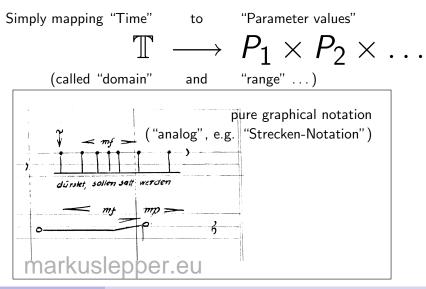

Organizing which material?

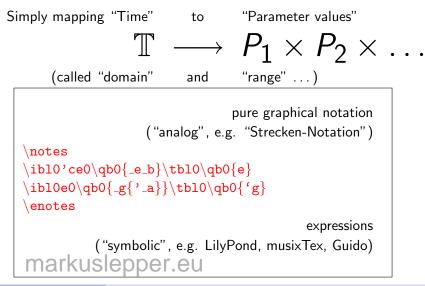

- light control
- video cue lists
- kinetic sculptures / robots
- stage performance
- music
- (every other thinkable time-related structure)

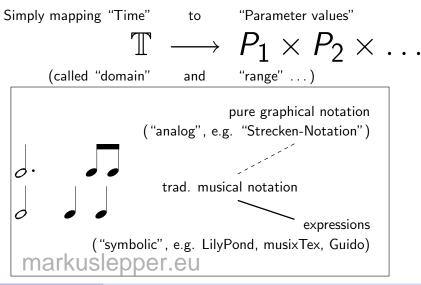


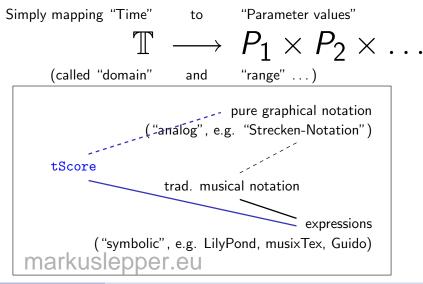

Human writes score and computer executes.











Notation of Temporal Structures

- Specialized Notations
 - Simply Numbers: Cue Lists
 - Spatial Notations, ("Streckennotation")
- (General) Music Notation
 - well elaborated, centuries of optimization
 - compact
 - easy readable, "one glance" (for musicians !-)
 - utmost versatile and adaptable (covers MONTEVERDI to STOCKHAUSE
 - specialized, restricted range (pitch information)
 - restricted domain (metrical duration values)
 - diversity of variants, partly conflicting (e.g. enharmonics)

Notation of Temporal Structures

Specialized Notations

- Simply Numbers: Cue Lists
- Spatial Notations, ("Streckennotation")
- (General) Music Notation
 - well elaborated, centuries of optimization
 - compact
 - easy readable, "one glance" (for musicians !-)
 - utmost versatile and adaptable (covers MONTEVERDI to STOCKHAUSH
 - specialized, restricted range (pitch information)
 - restricted domain (metrical duration values)
 - diversity of variants, partly conflicting (e.g. enharmonics)

Notation of Temporal Structures

- Specialized Notations
 - Simply Numbers: Cue Lists
 - Spatial Notations, ("Streckennotation")
- (General) Music Notation

- easy readable, "one glance" (for musicians !-)
- utmost versatile and adaptable (covers MONTEVERDI to STOCKHAUSE
- specialized, restricted range (pitch information)
- restricted domain (metrical duration values)
- diversity of variants, partly conflicting (e.g. enharmonics)

used in many "foreign" fields (alternative ranges)

Notation of Temporal Structures

- Specialized Notations
 - Simply Numbers: Cue Lists
 - Spatial Notations, ("Streckennotation")
- (General) Music Notation

- easy readable, "one glance" (for musicians !-)
- utmost versatile and adaptable (covers MONTEVERDI to STOCKHAUSE
- specialized, restricted range (pitch information)
- restricted domain (metrical duration values)
- diversity of variants, partly conflicting (e.g. enharmonics)

used in many "foreign" fields (alternative ranges)

Notation of Temporal Structures

- Specialized Notations
 - Simply Numbers: Cue Lists
 - Spatial Notations, ("Streckennotation")
- (General) Music Notation
 - well elaborated, centuries of optimization
 - compact
 - easy readable, "one glance" (for musicians !-)
 - utmost versatile and adaptable (covers MONTEVERDI to STOCKHAUSEN)
 - specialized, restricted range (pitch information)
 - restricted domain (metrical duration values)
 - diversity of variants, partly conflicting (e.g. enharmonics)

• Keep Principles of Conventional Music Notation

- time flows from left to right
- time distribution by division of space
- synchronicity by super-position / vertical alignment
- multiple tracks / parameters
- Do NOT keep restrictions
 - do NOT keep idiosyncratic junctims (e.g duration by note head AND stem AND flags AND dots AND ties AND tuplet brackets)
 - do NOT decide for certain parameter ranges (This is already impossible in "pure" music !-)
 - do NOT decide for a certain domain structure (there is NO standard notion of "time" !!)
 - allow arbitrary tracks with arbitrary parameter range esp. allow overloading

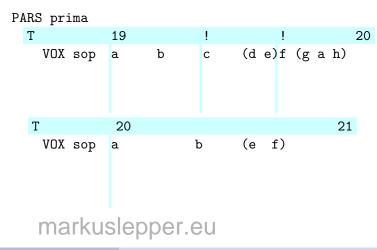
- Keep Principles of Conventional Music Notation
 - time flows from left to right
 - time distribution by division of space
 - synchronicity by super-position / vertical alignment
 - multiple tracks / parameters
- Do NOT keep restrictions
 - do NOT keep idiosyncratic junctims (e.g duration by note head AND stem AND flags AND dots AND ties AND tuplet brackets)
 - do NOT decide for certain parameter ranges (This is already impossible in "pure" music !-)
 - do NOT decide for a certain domain structure (there is NO standard notion of "time" !!)
 - allow arbitrary tracks with arbitrary parameter range esp. allow *overloading*

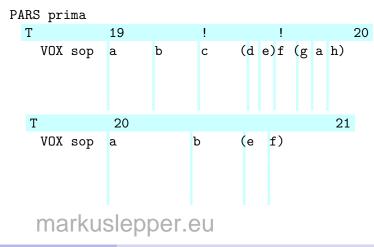
- Keep Principles of Conventional Music Notation
 - time flows from left to right
 - time distribution by division of space
 - synchronicity by super-position / vertical alignment
 - multiple tracks / parameters
- Do NOT keep restrictions
 - do NOT keep idiosyncratic junctims (e.g duration by note head AND stem AND flags AND dots AND ties AND tuplet brackets)
 - do NOT decide for certain parameter ranges (This is already impossible in "pure" music !-)
 - do NOT decide for a certain domain structure (there is NO standard notion of "time" !!)
 - allow arbitrary tracks with arbitrary parameter range esp. allow *overloading*

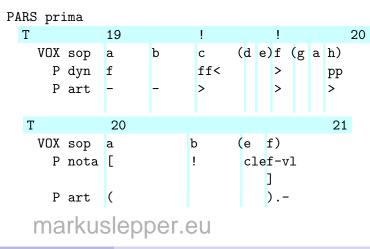
- Keep Principles of Conventional Music Notation
 - time flows from left to right
 - time distribution by division of space
 - synchronicity by super-position / vertical alignment
 - multiple tracks / parameters
- Do NOT keep restrictions
 - do NOT keep idiosyncratic junctims (e.g duration by note head AND stem AND flags AND dots AND ties AND tuplet brackets)
 - do NOT decide for certain parameter ranges (This is already impossible in "pure" music !-)
 - do NOT decide for a certain domain structure (there is NO standard notion of "time" !!)
 - allow arbitrary tracks with arbitrary parameter range esp. allow overloading

tScore example with standard CWN data

"PARS" separates independent time realms.

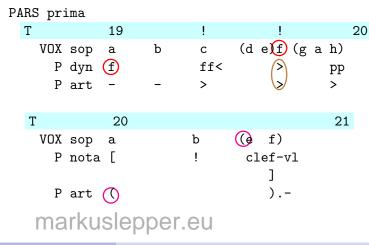

"T" lines define flow of time.


T line entries define division of time.


"VOX" main parameter values define events

... and thus further division of time.

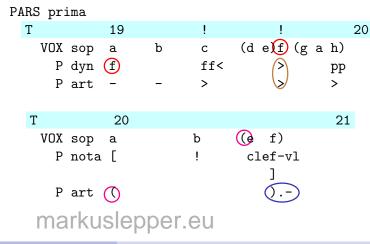
"P" parameter tracks for further specification of event data.



Lepper, Trancón y Widemann

"P" parameter tracks separate lexical appearance and meaning.

PA	RS	pri	ima											
	Т			19		!			!				20	
	V	/OX	sop	a	b	с	(d	e)	f	(g	a	h)	
		Р	dyn	f		ff	<			>			рр	
		Р	art	-	-	>				>			>	
	Т			20									21	
	V	/OX	sop	a		b	(e	f)				
		Р	nota	C		!		cl	ef	-v	1			
]					
		Р	art	()					
markuslepper.eu														


Re-usage ("overloading") of lexical entities easily possible.

Lepper, Trancón y Widemann t

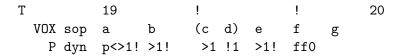
tScore Makes Computers and Humans Talk About Time

Re-usage ("overloading") of lexical entities easily possible. (Almost) arbitrary "ASCII ART" permitted.

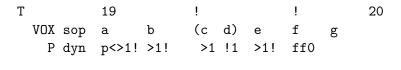
Lepper, Trancón y Widemann

tScore Makes Computers and Humans Talk About Time

tScore, Generic Building Blocks


totally generic:

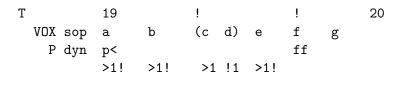
- Dotted Notation Expander
- Tendency / Group Collector
- Pattern Distributor
- Alternatives Combinator
- Placeholder Eraser
- etc. . . .


(more or less) specific for music / CWN:

- Running Octave Collector
- Metric Distributor
- etc. . . .

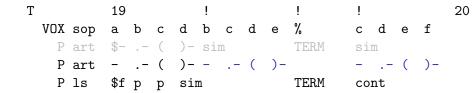
tScore Tendency and Group Collector

tScore Tendency and Group Collector

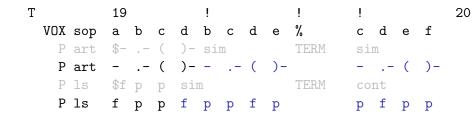


markuslepper.eu

tScore Tendency and Group Collector



markuslepper.eu


tScore Pattern Distributor

Т	19	!	!	!	20
VOX sop	a b c	d b c d	е %	c d e f	
P art	\$ ()- sim	TERM	sim	
P ls	\$fpp	sim	TERM	cont	

tScore Pattern Distributor

tScore Pattern Distributor

markuslepper.eu

tScore and lilypond DEMONSTRATION

markuslepper.eu

Call for propositions !-)

We are interested in ideas for application and/or co-operation

- in music analysis or music performance.
- outside of music (dance? drama?)
- as an output medium, e.g. computer generated.
- (any other idea ?-)

http://www.bandm.eu/music post@markuslepper.eu baltasar@trancon.de