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1 Introduction

1.1 Subject and Genesis of this Paper

This paper presents TUB-TCI, an architecture for automated control of distributed execu-
tion of test code.

The topic came across the author as a member of the TTCN-3 compiler
project group, headed by Peter Pepper and affiliated at Technical University of
Berlin/Fac. IV/ISTI/ÜBB. In this research group Jacob Wieland did the main job in de-
signing and implementing the TTCN-3 compiler, and Baltasar Trancón-y-Widemann

is the main author of the generic meta-toolkit, serving as compiler infrastructure.
This research group took part in two discussion fora initiated by ETSI, which dealt

with the TTCN-3 related run-time environment and its possible standardization. The final
outcome of these ETSI working groups are the specifications called

”
TRI“ (=

”
TTCN-3

Runtime Interface“, cf. [tri02]) and
”
TCI“ (=

”
Test Control Interface“, cf. [tci03]).

Other participants came from industry (Nokia, Erikson, Telelogic, Testing Technology,
et.al.) and academia (FhG Fokus), and the interesting and fruitful discussions showed, that
in industrial practice there is some need for a generic, versatile, open, simple and powerful
architecture for the management of distributed test execution, which additionally takes
into account the special needs of test execution in the field of telecommunication devices.
Such an infrastructure is called TCI (=

”
Test Control Infrastructure“) in the following.

Out of the internal discussions of the Berlin research group the construction of TUB-
TCI (=

”
TU Berlin TCI“) arose. This architecture does cover substantially more func-

tionalities than required by ETSI-TCI : While this concentrates on the requirements of
some TTCN-3 run-time library for use in the field of communication technology, TUB-TCI
is totally generic w.r.t. the concrete functionality of code and hardware, and does not give
preference to any distinct programming language or execution model1.

1.2 Intended Purposes and Status of this Paper

The central issue of this paper is to give a model-based specification of TUB-TCI: the
set of permitted behaviors of any TUB-TCI implementation is specified by constructing a
mathematical model which actually performs these behaviors.

There are several different purposes this paper is intended to serve, and there are
several others it is not :

+ The central part of this paper is the text in section 3, which presents one consis-
tent mathematical model (called the main model) describing (some specific possible
variant of) the functionality of TUB-TCI.
The main intention with this collection of mathematical formulæ (together with the
natural-language text) is to serve as a precise, human-readable basis for further inter-
human discussions, lifting these to a more exact and concrete level. While natural
language is sufficient and adequate when talking about general concepts, based on
well-defined notions related to common experiences, its usage turns out to be rather
tedious and error-prone when talking on the detail level of behavior specification.
Compare e.g. the preciseness and communicability of the

”
Request For Change“

with the wording
”
There should be some order-preserving w.r.t. messages“, to the

1Indeed the author does intend the application of TUB-TCI in quite different fields of real-time signal-
processing, as indicated in figure 13 on page 94 by the symbols chosen for sources and drains of signals.
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1 Introduction

wording
”
in clause 112 change f : set[α] to f : seq[α]“. In the latter version you

”
can

put the finger“ precisely on the very detail you want to refer to.
- But, in spite of its appearance as a kind of standardization proposal, TUB-TCI does

not intend to propagate all the individual design decisions taken in the main model!
Contrarily, — for the purpose to serve as a basis for a precise discussions of just
these decisions, the main model had to be designed as one single, consistent model.
Therefore many decisions had to be taken almost arbitrarily, just for constructing
the model, not implying any preference to the selected alternative2.
This paper is written with the intention to be subject to major changes and modi-
fications.

- The specification is not fully formalized w.r.t. extension, but covers just one aspect
of possible TUB-TCI implementations, which can be called

”
functionality“.

Any total formalization would probably miss the goal of human-readability. So many
important and necessarily covered aspects of a TCI system are not covered by the
formal part, but left to human-language description and

”
common sense“. This will

be further discussed in section 1.33.
+ So this paper can be read as a practical case study concerning the consequences

of the necessity to combine — with distinct aspects and areas — different levels of
formalization, and concerning the appropriate mixture of formal, semi-formal and
informal means for constructing understandable and precise specifications.

- The specification is not fully formalized w.r.t. intension. Again the goal of read-
ability required far-going extensions, up to modifications of the strict and formal
mathematical calculus selected as the basic meta-model (here: Z, [Spi92]), see 3.4.4.
A translation to pure Z, eliminating all genericity, reflection etc. is of course possible,
but tedious. The benefit would be the direct applicability of formal methods and
tools, as has been shown, e.g. for type-checking and execution (sic!) in [Gri99], for
model checking in [Büs03], and for theorem proving e.g. in [San98].

+ Since the paper contains one complete, consistent and practical specification of one
central aspect of a real medium-scale engineering system, it can be read as a case
study on the requirements for further language design, which shall support this kind
of

”
mathematical programming“.

- This is not a scientific paper
”
on“ distributed systems, and hardly any theoretical

questions are concerned.
+ Contrarily, it is a piece of concrete engineering, a kind of

”
hacking with mathemat-

ics“: The main model presents a complete and working
”
machine“ defined by pure

mathematical means4 5.
This machine could be directly implemented in a straight-forward way. Because of
the abstractness of its interface definitions, this machine and each of its implementa-
tions are equipped with

”
sockets“ to

”
plug-in“ the application of theoretic analysis

methods and results, as well as run-time bridging software to off-the-shelf formal
CASE-tools.

Since with increasing processor power and transmission bandwidth, the discussion of

2Section 5.1 will deliver in addition some possible alternatives.
Furthermore, some variants in non-critical detail design decisions will possibly be decidable not before

experiences with concrete implementations will have been made.
3For constructing a fully generic implementation, some neighbor areas of semantics also need to be

specified (e.g. value encoding mechanisms, hardware node capabilities, bus topology etc.). These areas of
semantics will be described in more detail in section 5.2.

4A way of
”
programming“ which resembles the approach taken by the micro-soft AsmL group, cf. [mic].

5A way of
”
programming“ which really is fun ;-)
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1.3 Technical Tasks and Operations Covered by TCI

encodings could be lifted to a far more abstract level than only few years ago (e.g. by using
CORBA IDL, XML,SDL). So standardization panels will more and more have spare time
to deal with more advanced topics, like language definition and behavior specification.

These advanced matters require the application of precise meta-models, the usage of
which must strongly be propagated in standardization processes. Psychologically level,
an model-based approach like herein should be suitable to bring some Sex&Cryme to
standardization discussion, — just because the medium of presentation is a

”
machine that

really works“. So this paper is intended to be useful on this
”
political“ level, by fiercely

campaigning for exactness as a means of creativity.
Since the design principles of TUB-TCI are intended to be as simple and canonical as

possible, we hope to present an architecture which is also somehow useful on the
”
object“

level, — for the current discussions, but even more for future developments.

1.3 Technical Tasks and Operations Covered by TCI

The central technical task of any TCI implementation (as defined above), is to provide
a communication framework for test execution, which allows easy and versatile inter-
operation of soft- and hardware distributed over several physical nodes. The nodes may
be provided by different vendors, and cooperate in changing constellations.

Consider e.g. a setting in which a specialized high-speed testing device and a general
purpose workstation cooperate in testing an SUT6. For both the workstation and the
testing hardware there may exist a TTCN-3 compiler. Some given TTCN-3 source code
contains the statements to make the high-speed device do some protocoling of filtered bus
traffic, and to make the workstation generate some low frequency test stimuli.

Assume the source has been compiled for all target nodes successfully. Then, to
achieve the intended behavior of the hardware nodes7, the following pure technical oper-
ations have to be performed:

(1) The code has to be loaded onto both hardware nodes, (2) some hardware resources
(internal to the nodes) must be allocated and configured, (3) communication channels must
be established and (4) finally the execution of code has to be started on all nodes almost
synchronously. For all these steps a uniform and reliable infrastructure is desirable.

Additionally there may be more specialized hardware test devices, which do not offer
the up-loading of user-defined code. Instead they present interfaces for the external pro-
gramming of certain (internal) resources. These resources have to be inquired, addressed,
reserved, configured, examined, reset, etc. Also these basic operations should be per-
formable through a TCI implementation in a standardized way. The unlimited multitude
of possible types and classes of such internal resources must be dealt with by some generic
element in any TCI architecture.

In case of a TTCN-3 based test process it can simply be defined that TCI covers all
operations still necessary after the compilation of the sources.

1.4 Related Work

There are some proprietary approaches to the TCI problems, i.e. architectures developed
by certain companies for internal use. These are neither published nor adoptable by the
whole community.

6SUT =
”
System Under Test“. — For a list of abbreviations see section 2.10 on page 25.

7This
”
intended behavior“ of the hardware indeed makes up the

”
semantics“ the author has had in

his/her mind when writing the ATS!
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2 Concepts of TUB-TCI

As an official standard there is the
”
Test Synchronization Protocol“ TSP1 [tsp97],

which specifies signatures in a formal way, but behavior or semantics only informally.
Furthermore there are some basic and important theoretical works (e.g. [BCPR99],

[UK99], [Tör99]) and also some first practical experiences with implementing TSP1 in a
TINA context ([VGSB+99]), but — as far as we know — this paper presents the first
attempt of a single, consistent, over-all behavioral specification of a TCI architecture.

1.5 Structure of the Paper

The following section 2 presents a top-down look on TUB-TCI, starting with the require-
ments and design principles. Then the concepts and ways of operation are described
informally. This description is focused on and starts with the functionality at run-time,
which of course is the real aim of the efforts and of main interest to the reader. All
auxiliary functionality (like boot and error behavior) are just sketched at the end of this
section.

Section 3 constructs TUB-TCI systematically by giving a model-based specification
of its functional aspect. Because the necessary infrastructure must be constructed bottom
up, the more descriptive parts for a first reading will be found (beside in the introduction)
in the last subsections.

Section 4 gives guidelines to generate the concrete encodings, by which the service
requests are realized on the data-link layer.

Section 5 offers possible variants of the specification and lists open issues and related
specification areas.

2 Concepts of TUB-TCI

2.1 Design Principles and General Design Decisions

The design principles of TUB-TCI are induced by some central goals and requirements,
namely . . .

• Simplicity.
• Openness (= Extendibility and Portability).
• Reliability.

Simplicity is an important underlying design principle for all basic mechanisms in
TUB-TCI. It is firstly required by the need to implement (a subset of) TCI even on primitive
nodes with very limited resources. Besides, simplicity is an important prerequisite for
ensuring reliability, and it is required for æsthetic reasons8.

Extendibility means that the architecture must be extendable and parameterizable
by third-party definitions of type, data and behavior. Then it will probably also be open
to most results of forthcoming development. In our approach the chosen means are mainly
modularity and genericity .

Portability implies the applicability of TCI to communication infrastructure of widely
varying kinds. Low-cost portability is a central goal, because it is a prerequisite for the
intended inter-operation between hardware nodes from different vendors.

8Applying certain categories from the field of æsthetics to technological problems can indeed have
substantial positive economic impacts. Consider e.g. the differences in training costs, maintainability of
sources, efforts for documentation etc., when comparing some

”
ugly“ with some

”
pretty“ language.
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2.1 Design Principles and General Design Decisions

As a consequence, (1) the set of all assumptions made about the style and behavior of
the underlying system levels (hardware, OS, execution model, communication architecture,
etc.) must be as small as possible. Therefore,(2) the formalism and kind of specification
technique used for TCI must necessarily be rather loose.

Reliability : Because of this looseness of specification9, much labor has been invested
to guarantee reliability .

Firstly, the general style in the design of all interactions and transformations is strictly
defensive. Secondly, there have been some central design decisions taken in the interest of
reliability and robustness:

• Single and Fixed Master.
In each TCI test setting there is one single central entity providing all necessary
static and dynamic configuration information10 11.
This permits e.g. to represent each subsystem by a scalar value used as identifier,
which is unique w.r.t. the whole setting and a known interval of real-time, because
only the single master entity is allowed to assign identifiers. This defensive approach
is the only way to guarantee referential integrity in a loose specification without
complicated (three-semaphore) communication at run-time12.

• Hard Reset.
It must be considered that the communication lines used to drive TCI commands
can be part of the

”
system under test“ themselves. Therefore a hard reset is forseen,

which could be performed after each test suite (or even after every test case) to bring
each node (and each bus!) into a defined startup state again.

• Redundant and Simple Encoding.
At some crucial points there are fields of redundant data required by the specification
of TCI messages, — e.g. the source node of each transmission is encoded explicitly
in the message, instead of being derived from the internal protocol of the receiving
hardware. This additionally facilitates diagnosis, e.g. by external bus sniffing.

• Formal Specification.
Much effort in scientific Software Engineering has been spent on making critical
systems more reliable. The evolved methods and concepts should also be used when
implementing test systems, which are not life critical by itself, but shall be applicable
for testing life critical systems.
Therefore TUB-TCI applies the concept of

”
Formal Specification“: the kernel be-

havior of TUB-TCI is specified in a precise way by mathematical formulae. The pe-
ripheral areas (e.g. language binding, error recovery) are specified in a semi-formal,
symbolic way, but nevertheless without ambiguity.

9. . . . but indeed because of the heterogeneity of the practically existing hardware pools, which is only
reflected by that looseness

10Indeed this entity is implemented in two subsystems, CAS and TM, realizing two levels of
”
strategic

knowledge“, –see below in 2.6.
11Future times could require a distributed mastership, when e.g. making

”
planetary distance“ remote

tests (� −→ Ψ ) with high delay time in communication. Such a design could perhaps be derived from
the mono-master design presented herein by finding

”
sub-objects“ and

”
sub-categories“ in the network of

flow of data and control.
12This design may indeed cause significant execution time overhead when creating objects in run-time.

At the moment this seems acceptable: create() commands are assumed to happen in TPrep, and in TPrep
execution time is not considered critical in the current version of TUB-TCI.

9
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2 Concepts of TUB-TCI

Figure 1 Hardware Nodes and Testing Sand-boxes
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2.2 Imperative Test Specification : Execution Model as Semantic Model

Figure 2 Most Frequent Paths of Service Requests
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2.2 Imperative Test Specification : Execution Model as Semantic

Model

Historically and in today’s practice there are most different ways of making a psycho-
internal image of

”
testing“. The spectrum extends from pure mathematically given

specifications (or models) of semantics, via executable programs in a functional or
(constraint-)logical high-level language, up to a traditional imperative style of modeling.

The last is the viewpoint taken by languages like TTCN-2 and TTCN-3: The test
procedure is specified as

”
really a procedure“, and is given as a traditional imperative

program13.
The semantics in the head of the author while authoring such a test program, are

determined by the imagination of the further technical processing: The program will be
compiled, and then loaded onto some hardware. and then, as long as the compiled code
is

”
being executed“ (i.e. as long as the behavior of the hardware ensemble is determined

by the imperatively given algorithm) this hardware will continue . . .

• to send stimuli to the SUT14,
• to monitor and analyze the reactions of the SUT,
• and to compare this input with the set of expected reactions, i.e. with those reactions

which are allowed for the SUT to pass the test.
• In case of violation or fulfillment of this expectation, a verdict can be raised, —

an event which normally stops the test execution loop, e.g. for starting the next

13Of course tests defined in some higher-level declarative language will finally, e.g. after being compiled,
end up as imperative code as well.

14SUT =
”
System Under Test“. — For a list of abbreviations see section 2.10 on page 25.
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2 Concepts of TUB-TCI

test-case automatically15.

The totality of all behavioral definitions given by a certain test case or test suite on
the source level (e.g. as a TTCN-3 source text) is called Abstract Test Suite (ATS).

The totality of all fragments of executable code resulting from the compilation of a
given ATS is called Executable Test Suite (ETS).

2.3 Physical Architecture, Node Topology

TCI now comes in play after compilation, in case that the hardware intended to execute
the ETS consists of several independent nodes.

The physical picture of a typical TCI setting w.r.t. space is an ensemble of computing
devices from most different families: general-purpose PCs, specialized real-time filters and
routers, bus analyzers, together with the monitoring firmware in all these devices, etc.
Each of these

”
physical“ computing devices is called hardware node (or just node) in the

following, if and only if it behaves independently from all other hardware nodes, — e.g.
can be reset, initialized and configured on its own.

These physical devices of course must be connected by physical communication chan-
nels. These, too, may be of most widely differing types and technologies. These com-
munication devices (or some virtual systems built atop of them) are called busses in the
following16.

The set of all nodes and busses involved in performing a given test case is called
test ensemble (TEns) in the following.

Please notice that each hardware node which is able to execute ETS code or which
offers hardware devices, does do this is a dedicated and restricted area, called (testing)
sandbox . Figure 1 schematically shows two hardware nodes, their sandbox areas and
the position of the different TCI

”
subsystems“, as defined in the following sections. The

figure also shows symbolically how the physical reality of the hardware node (outside
the sandbox) can be mapped into the reign of TCI using trns and actor subsystems.

It is exclusively the contents of this sandbox which is controllable by TUB-TCI. There-
fore, for sake of simplicity, (1) the following figures will only show these sand-boxes, —
cf. figure 1 with figure 4, (2) the following text simply says

”
(hardware) node“ when

referring to this sandbox, and (3) the formal specification of TCI-behavior in section 3
refers to the behavior of these sand-boxes.

W.r.t. time we refer to some distinct, continuous interval of real-time as a test session
(TSess), if during this interval testing processes are prepared, performed, protocoled etc.
The internal organization of test sessions is out of scope of TUB-TCI (and of any TCI in
general), but related to some (mostly informally given) test strategies, in-house process
regulations etc. From TUB-TCI’s viewpoint a test session is seen as a sequence of sub-
intervals, which alternate between test preparation and test performance.

Those intervals of real-time, in which the user intervenes for configuring and preparing
the next test are called test preparation phases (TPrep). During TPrep the code objects a
given node has to execute in a given test case has to be up-loaded and then the logical
communication channels have to be established.

The intervals of real-time, in which an executable test case or an executable test
suite is performed (i.e. the interval in which the addressed devices are acting totally

15In case of TTCN-3 most parts of the three activities (ie. sending of stimuli, analyzing the reactions,
calculating the verdict) must be calculated

”
by hand“ in an imperative style, — beside some support by

pattern matching and genericity.
16Even if they are just one-to-one connections.
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2.4 Features and Functionalities offered by TUB-TCI

determined by the semantics of the ETS) is called test execution time or run-time (TRun)
in the following. This phase is entered when the

”
test execution“ is started by some

controlling instance. During TRun the necessary real-time communication between nodes
must take place.

Please notice that different nodes can be in different phases, because there must be
some system command switching each node from TPrep to TRun. Looking at it very
precisely, this command does never reach any two nodes synchronously.

This phænomenon of
”
relativity“ resembles the fact that on each distinct node a

different
”
local time“ must be used to represent the abstract scalar

”
time“.

2.4 Features and Functionalities offered by TUB-TCI

From these scenarios one can deduce the necessary features and functionalities. Any
implementation of TCI provide means for . . .

• resetting and initializing hardware nodes,
• loading code fragments for execution onto nodes,
• allocating hardware resources on remote nodes,
• accessing (=inspecting and manipulating) hardware resources on remote nodes,
• preparing and configuring communication channels,
• starting and aborting test execution (i.e. switching a node between TPrep and TRun),
• passing real-time control and data information between nodes,
• controlling and monitoring the transport of real-time data.
• distributing the global test parameters,
• collecting the verdicts raised by an ETS.

These functionalities will be addressed by clients from two very different groups.
Those listed first will be used by a super-ordinated test control software (TM) for prepar-
ing a TRun. This will happen mostly during TPrep. The latter will be used by the
executed ETS itself during TRun to perform the real-time interactions corresponding to
the statements contained in the ETS.

For sake of versatility there are two further central requirements on TUB-TCI:
Generally we state that w.r.t code deployment, hardware allocation and run-time

communication control, that . . .

• the static and the dynamic way of decision taking (i.e. the compiler-based and the
run-time-based scheduling of resources, happening in TPrep or during TRun) must
equally well be supported,

• and both methods should even be arbitrarily combinable for controlling the same
TRun.

On the technical level of communication there is also a combination of two paradigms:

• The aim of inter-operability requires the architecture to be based on some standard-
ized message format (here: XML-based),

• but issues of performance speed may require to integrate additionally some special-
ized and/or proprietary binary encoded high-speed communication channels.

13
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2 Concepts of TUB-TCI

2.5 Behavior Specification by Parallel Execution, — Multiple Sources

of Activity

The overall behavioral specification as given by ATS and ETS is mostly realized as a
collection of co-operating co-routines or (virtually or physically) parallel executing threads.

So the total semantics of ETS have to be split into those of separate processes. The
common execution of all these processes (according to a certain schedule) is required to
realize the semantics. Therefore each of the processes needs a kind of

”
active object“,

which performs the execution of the process code as its behavior.
Concerning the identification of active objects and of sources of activity there are

widely differing pictures, depending on the viewpoint:

• Seen from the viewpoint of the TTCN-3 author, i.e. considering execution w.r.t. the
TTCN-3 semantics, there are exactly the component objects as only

”
active objects“,

i.e. the only source of activity in the whole system. Each call of the component-
constructor call in execution of the source text can be considered to correspond to
the instantiation of exactly one thread (on a given node). This thread is going to
perform the compiled code of TTCN-3 behavior definition, which has been assigned
to this component object in the sources.

• In a
”
finer“ view – i.e. looking at lower system aspects – there are the producer-style

subsystems, forming a further group of active objects (e.g. hardware timers, input
ports, demon threads polling passive sensors). They create stimuli unexpectedly and
independently from the flow of control in the TTCN-3 code. This model of activity
is also depicted in figure 3 by boxes with thick borders.

• In the topmost perspective we have just the opposite interpretation : Here some

”
Test Manager Application“ is meant to control all activities in all hardware nodes

(including possibly the SUT). From this point of view, this user interface – it may
be interactively controlled or batch oriented – is the only source of activities17.

2.6 Logical Architecture, Categories of Subsystems

TUB-TCI does take just another, different view to execution:

• We call the
”
total behavior of an ATS(ETS)“ all active code fragments and processes

which are executed by the hardware nodes of a TEns when performing this ATS(ETS).
So the

”
total behavior“ comprises the user defined code itself (= the ETS), and

additionally all system processes, drivers, infrastructural demons, interrupt handlers
etc.

During any TRun there is exactly one total behavior ruling the behavior of the TEns,
depending on the selected ATS.

In TUB-TCI, this total behavior is now realized by the parallelization of different
fragments of (active) code, which are represented as so called subsystems 18.

It is of central importance that this definition is complete w.r.t. extension: all code
running physically during TRun is uniquely assigned to a single subsystem. The identity

17By the way – concerning the question for the sources of data flow the latter dichotomy indeed causes
problems : Many times the ATS/ETS source text and the concrete Test Manager Application compete in
defining test values (e.g.

”
Module Parameters“ or

”
IXITs“).

18The subsystems correspond to the concrete running tasks on a node only as a concept, because on
implementation level two things will frequently happen : Conceptually different subsystems will be imple-
mented in one piece of code, – and one single subsystem can be realized by more than one running threads
or processes.

14
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2.7 Service Request Interaction as Evaluation Mechanism

of this subsystem is always known, there is no
”
hidden“ code outside this formalism, even

if all other aspects of the code are totally undefined.
The TUB-TCI-specification is not complete w.r.t. intention: there are large semantic

areas, which are application dependent and not specified (or only generically defined) in
TCI.

Any subsystem is characterized by the following facts:

• It is always known when it is created and when it is deleted.
• Throughout its lifetime it is hosted on one and the same distinct hardware node19,

called the
”
hosting node“ of the subsystem.

• It is identified by one single constant address (e.g. by a NodeIdent or a LUID).
• It belongs to exactly one of the categories of subsystems 20 defined in TUB-TCI.

All subsystems belonging to the same category are called
”
instances“ of the category.

Please notice that we frequently use an abbreviating terminology like
”
. . . any actor subsystem

. . .“ or even
”
. . . any actor . . .“ instead of

”
. . . any subsystem of category actor. . .“, whenever

confusion is impossible.

2.7 Service Request Interaction as Evaluation Mechanism

All evaluation in the TUB-TCI-specification takes place by
”
Service Request“-style inter-

actions between two subsystems. In such an interaction one subsystem takes the client
rôle, the other the server rôle.

In the following we will say that the client
”
generates a service request“ (=

”
SRQ“)

(and
”
sends it to the server“), — or that the client

”
requests a service (from some subsys-

tem)“.
The subsystem acting as a server

”
executes the SRQ“ or

”
processes the SRQ“, and

may send back a
”
reply“21. So every subsystem must

”
offer“ some services, ie. define

some services callable by other subsystems, to be of any use at all.
Additionally every subsystem may request services, either out of the execution of

another service, or out of some
”
active“ behavior.

The definitions of which services are offered and requested is totally defined by the
category the subsystem is an instance of. For each category of subsystems it is defined . . .

• How many instances are allowed/required per TEns/node during a valid TSess, as
indicated in table 2.

• Which global system phases (
”
epoques“) limit the life-cycles of its instances.

• Which services (minimally and maximally!) are offered to other subsystems, — i.e.
how the instances of this category behave in the server rôle, as listed in table 4.

• Which services (maximally!) may be called out of the execution of the subsystem’s
code, — i.e. how the instances of this category behave in the client rôle.

So each category defines the set of services which any instance must implement and
offer to the other subsystems (cf. table 4), and the set of services maximally requested
from within its active behavior. This active behavior of its instances itself is also, more or
less, determined by the category.

19Except the
”
virtual“ subsystems QAS and trns, which are realized on each hardware node once, but

exist on the conceptual level, ubiquitously, only once.
20The wording

”
category“ has been chosen instead of

”
class“, to avoid confusion with actor classes,

which reside on the object level of the language.
21All these interactions are realized as message-exchanges of deliver() message in the trns subsystem.
These again are realized as

”
electric interactions“ between the corresponding BusAdpt subsystems.
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2 Concepts of TUB-TCI

Indeed, the version of TUB-TCI presented herein consists substantially of a collection
of nine (or more, as you count it) cooperating, but independent specifications, — one per
category of subsystems, following the principle of modularity.

This allows to realize a complex behavior (on different nodes or even on one single
node) by combining implementations of subsystems by different vendors or programmers,
written in different languages.

2.8 Subsystem Categories defined in TUB-TCI

In a first approach TUB-TCI identifies and defines nine to twelve categories of subsystems
(cf. table 2 and table 1), which can be characterized as follows:

• All instances of all subsystems offer some services.
• The sets of identifiers (

”
names“) for the offered services are pair-wise disjoint for all

pairs of categories. So there is a function from service names to server category, and
a clean graph from category to category, spanning the flow of SRQS, as shown in
figure 3 on page 17.

• All categories (except actor and RBQ) can (and probably will) also act as clients.
• For some categories (trns, CAS, QAS, NodeServer) TUB-TCI contains a total specifi-

cation of the behavior of all their instances.
• The other categories are only partially defined, and their behavior depends widely

on the application level semantics. Nevertheless, the limiting sets of minimally of-
fered/maximally requested services, as described above, are always known.

• A few of these categories (trns, HsLink, . . . ) realize some general, IP-like mecha-
nism of data exchange between physical nodes. They form the low-level layer of
the architecture, combining some kind of

”
data-link layer“ and

”
transport layer“

functionality.
• The subsystems of the other categories are situated on top of this layer, using it

for the realization of their basic activity, which is the SRQ-interaction. These eight
(TM, CAS, NodeServer, Factory, Producer, (Actor,) RBD, RBQ, QAS) form the upper
layer, a kind of application layer (cf. figure 6). They can be shortly characterized
as in table 1, and will be discussed in detail in the next sections.

Figures 2 to 5 show some of these subsystems deployed onto different nodes, together
with the most important flows of service requests in different grades of abstraction.

2.8.1 RBD and RBQ = Run-Time Behavior Dynamics and Queues

The first two categories of subsystems (RBD and RBQ) represent the active and the passive
aspect of the compiled user code, i.e. of the ETS, and the underlying principle has been
taken over from some historic approaches:

The viewpoint of the TTCN-x source semantics as mentioned above had already
been reflected in the design of GCI [GCI96], the run-time interface definition originally
developed for TTCN-two support: In the GCI/TTCN-2 context the ETS was given by one
single

”
user level“ test procedure, the compiled code of which includes calls to the functions

of the run-time library. This library itself offers only passive interfaces, — the only source
of activity when running the ETS is that single user-defined procedure. The realizing code
for this active aspect of the ATS was called RBD (=

”
Run-Time Behavior/Dynamic“).

In
”
classical GCI“ the active behavior was completed by a second, separately given

and inverse interface, called RBQ (=
”
Run-Time Behavior/Queue“). This interface real-

ized the passive aspect of the ATS , i.e. the rôle as
”
receiver“ of incoming messages. The

16
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2.8 Subsystem Categories defined in TUB-TCI

Figure 3 The Flow of Service Requests w.r.t. Categories of Involved Subsystems
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functions of this interface had to be called by active objects on system level, ie. interrupt
handlers or polling demons, which realize some producer-style, active device drivers.

Since this design is really canonical w.r.t. industrial coding practice, it is preserved
in our new approach, and so are the names RBD and RBQ.

Furthermore TTCN-3 does overtake from the old TTCN-2 concept the treatment of
the temporal semantics of externally generated, received events: On the RBQ side, all
incoming messages are just entered into a queue as soon as they are received

”
physically“.

But the time when to perform the analysis of the incoming message, and the time when
some reaction is performed, is totally determined by the execution of the corresponding
active part (RBD): In case of TTCN-2 and TTCN-3, messages are not considered until
the execution of the ETS reaches the execution of an alt statement: Whenever the active
part performs an alt statement, the first message is dequeued and analyzed. Then the
execution of the active part can branch accord to the results of this analysis and perform
the corresponding reactions.

But now, in case of TRI/TTCN-3, we have to deal with parallelism on the level
of authoring: The two single interfaces RBQ and RBD are replaced by a multitude of
subsystems, and every component object in TTCN-3 source semantics has to be realized
by two TUB-TCI subsystems, one of category RDB and one of RBQ22.

Compared to GCI, here abstraction and separation enlarges the applicability of the

22On the implementation level the correspondence between these both subsystems of course has to be
reflected, e.g. by one parameter value field of type LUID on each side, pointing to each other. This is
depicted in figure 3. But indeed the mapping of the component source level construct to subsystems is just
a practical matter of the usage of TCI, and outside the scope of this specification.
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2 Concepts of TUB-TCI

Figure 4 Servers as seen from
”
Run-Time Behavior“
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concept
”
RBD&RBQ“ significantly: E.g. a counter or a protocol writer can be declared of

just RBQ-style, without having a corresponding active behavior, — a filter object doing
some recoding of a signal stream can be declared as Producer (i.e. as signal source, see
next section) and as RBQ, thereby being insert-able between an arbitrary Producer and
each RBQ, — etc.

Please notice that RBD and RBQ
”
include“ or

”
inherit“ the services of actor category. These

services are required to create, initialize, control, delete etc. the subsystems. This fact is described
in detail in sections 2.8.9.

2.8.2 Actors, Actor Classes and their Generic Definition

To perform testing of physically existing hardware systems, their input and output de-
vices must be

”
lifted“ (1) into the sematic sphere of the applied programming language

(e.g. TTCN-3) and (2) into the TCI run-time collection of subsystems. The latter is done
by mapping them to dynamically created subsystems of the actor category23.

Each single actor subsystem represents one distinct physical device (or one separately
controllable

”
logical channel“ of a physical device). Actors can be used to model timers,

ports, display elements, input switches etc.
Only the RBDs operates on these actors by issuing control commands and sending

output data to them. Actors (if they are not producers, see next section) are
”
passive

objects“ from the code’s point of view.

23The wording
”
actor“ is somehow misleading, but all alternative proposals (

”
device“,

”
tidget“,

”
object“)

also carry wrong connotations. Misleading is, that actor subsystems (1) need not have any act ive behavior
at all, and (2) need not be realized by an active object.
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2.8 Subsystem Categories defined in TUB-TCI

Each actor is related to exactly one(1) actor class 24. An actor class describes the
possible control operations and data types which can be issued by an RBD to each actor
of this class.

The definition of the different actor classes is (naturally) not part of TUB-TCI. Instead
TUB-TCI defines a generic interface for plugging-in declarations of actor classes. These
declarations have to describe the configuration parameters for installing and modifying
actor subsystems, and have to define the run-time operations they can be subjected.

Beside this generic declaration interface — which at the moment only lives on concept
level — TCI comes with a library of general-purpose actor classes (cf. section 3.14), and
requires from every actor a few basic services for receiving configuration control commands
and run-time operations. In general the information contents of these interactions are
treated opaquely by TCI.

Please notice that, as mentioned above, the subsystems of categories RBD and RBQ also
implement the (few) services defined with the actor category.

This can be considered a case of
”
specialization“ or

”
inheritance“. But from the point of view

of the generic actor (meta-)category, RBD and RBQ are predefined instances of actors, not sub-
classes! This complicated but fundamental relation is described with more details in sections 2.8.9.

2.8.3 Producers = Event Stream Producing Actors

One sub-category of actors is used to model those external hardware devices, which can
produce stimuli to the system

”
on their own“ and

”
spontaneuosly“. To these devices

belong timers producing the events indicating their expiration, input ports producing an
event on each arrival of a datum, switches producing an event when their position is
changed etc. The representing actors are called

”
Event Stream Producing Actors“, or

producers for short25.
Whenever the hardware device represented by a producer subsystem detects an ex-

ternal event, this is signaled to TCI by a value event() SRQ, generated by the active
behavior of the corresponding producer.

2.8.4 QAS = Queue Access Server

These value event() SRQS generated by producers are serviced by the QAS subsystem.
To receive value event() messages from a distinct producer, an RBQ has to subscribe

for it. This subscription is done by another service offered by QAS.
All value event() messages are distributed by QAS to all RBQs which are currently

subscribing for the source of the signal, and to all remote nodes which also host currently
subscribing RBQs.

The QAS subsystem is realized by one task running on each node, and will normally be
implemented in the same piece of code as the NodeServer. In this specification it appears
separately, because on the conceptual level there is only one single QAS server in the
whole TEns (while the NodeServers are distinct individuals with each different capabilities,
corresponding to the different types and configurations of hardware of nodes they have to
manage).

24Which on the other hand can combine the features of more than one different actor classes, see below
section 3.9.

25Technically, actor classes for producers are not modeled as a category of actors on its own, but are
realized using the genericity of actor, — they simply are actor classes which

”
include“ the features of the

predefined abstract actor class Event Stream Producer.
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2 Concepts of TUB-TCI

2.8.5 CAS = Central Access Server

Following the design principles of reliability and ease of implementation, there is – as
mentioned above – conceptually one single central entity managing and holding all knowl-
edge which is global w.r.t. the whole TEns. This entity is realized by two categories of
subsystems, each of them having exactly one representative in every possible TEns.

One of these categories is called
”
Central Access Server“ (CAS), and its specification

is totally in the scope of this specification. The other one is called
”
Test Manager“ (TM),

and only a small subset of its functionality is defined within TCI, — see section 2.8.6.
The CAS gathers and distributes all relevant information concerning deployment,

which is deducible from the operations performed internally by TCI.
Consider e.g. the problem of referential integrity, i.e. how an RBD can reliably reach

the interface of an actor in a distributed test environment, without knowing the exact
times of its creation and deletion. In TUB-TCI this is accomplished by the rule, that
all create() commands performed by an RBD are directed to the single one CAS. All
operations on remote actors, from which the hosting node of the physical implementation
is not yet known, are feasible by asking the CAS once for the

”
address“ of the hosting

node.
This solution, caused by the requirement of reliability, has the second advantage

that a TM (and any other diagnosis tool) can retrieve information on the state of the
whole TEns, all existing actors and all running RBDs just by inquiring one single source of
information, the CAS.

Like any other subsystem the CAS is hosted on a single node. This node is called
CASnode. It is required for the topology of the network made of nodes and busses, that

• each node is reachable by the CASnode,
• and each node can reach the CASnode.

Please notice that this does not imply that all busses in a TEns have to be bi-

directional. Indeed it is possible that the CASnode reaches a given node N via a node

N1, while N reaches CASnode via some other nodes, not crossing N1. The architecture

of TUB-TCI but does imply that each node has an output channel, i.e. not only can

receive service requests, but can also send back some confirmation.

2.8.6 TM = Test Manager Application

The super-ordinated test control software is called Test Manager (TM). Its behavior is out
of the scope of TCI, – from its point of view a TM is just a special kind of RBD (see below),
with the main difference that it is the only RBD which is initialized

”
from outside“, i.e.

which is active before any TCI activity takes place.
The overall deployment information (which code has to be loaded onto which node,

on which node a given timer, port or component has to be installed, how the nodes are
connected physically and how the network addresses are assigned, etc.) are not represented
in the scope of TCI, but have to be realized in the TM.

There are only two defined services offered by TM to CAS, by which the TM offers
some required information passively (cf. table 4): By the first the CAS lets the TM decide,
on which node a new actor subsystem demanded by an RBD shall be created, – the other
allows to ask for the current values of the global test parameters.

So the TM has to pass all other some necessary portions of the overall configuration
information to each node in the TEns actively , i.e. has to configure the whole TEns by
issuing the correct sequence of TCI service requests (in fact to the NodeServers, see below).
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2.8 Subsystem Categories defined in TUB-TCI

How this sequence is scheduled in a sensible way is not specified in TCI, but can
easily be concluded from the specified subsystems’ behavior.

2.8.7 NodeServers, Factories and
”
Drivers“

The creation of the physical actors can only be done locally on the hosting node. This
is the central job of the the NodeServer category of subsystems. Each node hosts exactly
one NodeServer.

The real work of creating new actors is done by a factory. The NodeServer just passes
the create request and its parameters to such factory and passes back the results.

In the sphere of a concrete implementation these factories can be realized as

”
classes“, and the creation methods can be seen as

”
static“ methods of such a class,

while the functionalities offered by created actor subsystems can be seen as
”
member func-

tions“ or
”
non-static methods“. Then the class realizing the factory also realizes a kind of

”
driver“ for the functionality of its dynamically created instances.

This specification uses a different point of view : The creation methods are offered
by the nodeServer and factory subsystems, while the operations of (or on) a dynamically
created subsystem are specified with the actor subsystem.

2.8.8 Putting it together

The cooperation of the subsystems introduced up to now is depicted in figure 2 on page 11
in a most abstract view which shows four(4) fundamental kinds of interactions :

(0) An RBD speaking directly to the CAS, for requesting e.g. a setVerdict() or a
getGlobalValue() service.

(1) An RBD requesting a create() service, which is passed from CAS via NodeServer to
a Factory.

(2) An RBD doing some control operations on an actor.
(3) A producer sending a value event() via QAS to an RBQ.

Figure 4 shows in detail, how the same communication situations are realized by the
underlying trns subsystem.

Figure 5 shows a realistic situation, where a TM prepares a communication channel
(−→) from some producer to some protocoling unit (∈ RBQ) (for later use at TRun) by
issuing create() requests and configuration messages (−→).

2.8.9 Inheritance Relations between Actor, RBQ, producer, RBD and TM

So far we used a clean model of pairwise-disjoint sets of offered services, and limited sets of
requested services for each single category of subsystems, as introduced with the concept
of subsystems in section 2.8.

This clean model is somewhat disturbed by the fact that some of the most important
flows of signals and control are implemented by violating this principle of disjointness.
Instead there is some

”
inheritance-like“ inclusion relation, which is depicted in figure 3 on

page 17 (together with those signal-flows).
The small server interface of actor(= setParam(), getParam() and rtOperation())

and its empty client interface are inherited and extended . . .

• by RBQ, adding the service for receiving signal event values asynchronously.
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2 Concepts of TUB-TCI

• by producer, adding the primitive client behavior of generating value event()s asyn-
chronously.

• by RBD, adding all of the full and rich client behavior related to the application se-
mantics, — mainly creating new subsystems, operating on and configuring of actors,
and controlling the run-time signal flow. But also requests for arbitrary special-
ized control and meta-control services may be included26 offered e.g. by trns, CAS,
NodeServers or Factories.

Figure 3 on page 17 illustrates how the three
”
fundamental kinds of interaction“, men-

tioned in the mentioned in the pre-going section27 are implemented using this inheritance-
like mechanism:

Since RBQ, RBD and Producer all implement the actor services, these can be used
by any RBD to create, configure and control all these different subsystems by the same
interface, cf. figure 3, paths (1) and (2). This is accomplished by means of genericity .

A Producer subsystem may send a value event() message to QAS; then QAS sends
a rtOperation(putQ()) message to all subscribed RBQs, see cf. figure 3, path (3).

Please notice that the whish to react on incoming signals in general, and the execution of
a TTCN-3 ETS especially, require to close a

”
central processing cycle“ by connecting the incoming

signals arriving at an RBQ to some active behavior in an RBD. This cycle is not closed in TUB-TCI,
but is left to the usage of TCI. In case of TTCN-3 this cycle is closed by a component construct,
which ties one subsystem of RBD category to on of RBQ. While this construct is of course also
outside the scope of TCI, it is nevertheless graphically indicated in some of the figures 2 to 5.

• Last not least: the TM category must inherit most of the client behavior of RBD.
This is necessary simply because this is the only way at all foreseen in TUB-TCI to
become somehow

”
active“ for doing anything senseful, e.g. send create() requests

to Factories and configuration changes to actors.28.

2.8.10 trns = Transportation Layer

Two subsystems make up the lower layer of the architecture:
First there is the trns subsystem, which realizes a minimalistic version of a kind of

”
combined transportation and network layer“. For all SRQS and replies all subsystems

must use the trns layer for information exchange.
Figure 6 shows the information flow between all subsystems described so far, and

how the communication is piped through trns. The thick blue lines indicate the
”
logical“

interfaces defined in this paper.
The thick green line indicates the

”
physical“ interface, i.e. the definition of the

data format actually exchanged on the wire. This is ruled by a central (and only :-)
specification :

26If the request of a value event() service is permitted for an RBD (i.e. a kind of software-generated
events), then RBD seems to inherit from Producer, and only indirectly from actor. This possibility is
indicated graphically in figure 3.

27(1)=creation, (2)=control and operation of actors, (3)=run-time signal flow, depicted in figure 2 on
page 11.

28On the server side there needs not to be a relation from TM to RBD. The services offered by TM are
defined on their own. So the actor services for configuration control, status inquiry, deletion, etc. need not
to be supported by an instance of TM, — mostly the TM-process itself is not running under the control
of TCI.
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2.8 Subsystem Categories defined in TUB-TCI

Figure 5 A realistic Scenario, including a
”
Test Manager“ TM

Actor

GUI

Batch

Protoc

TCI
Lib
/ Impl

Actor
Factory
/ Driver

powerUp
Logic

powerUp
Logic

0

effective control flow of requests realtime

component

RBQ

RBD

RB
Lib

NodeServer

NodeServer

TM

RBQ

RBD

NodeServer

CAS

TCILib

configuration

All TUB-TCI information exchange is realized by the exchange of valid, ASCII
encoded XML fragments.

Section 4 describes a canonical encoding rule, which translates all
”
Free Types“ ap-

pearing in the specification into XML Element definitions. All systems which claim to be
compliant with TUB-TCI must support (at least one variant of) this XML encoding.

Since (1) complex SRQS containing complex configuration information should sel-
domly happen in TRun, but in the less time-critical TPrep, (2) since XML is an easy to
decode,

”
almost binary“ data format, and (3) because processing speed will further in-

crease in future, the overhead of using a
”
textual“ encoding for configuration purpose is

more than balanced by the un-ambiguousness and easy traceability which will yield high
profits, especially in complex hardware situations.

2.8.11 HsLink = High Speed Channels

For real-time data flow the situation can be different, – coding and decoding real-time
value events into XML could turn out to be infeasible for performance reasons.

Therefore TUB-TCI provides a second transportation layer protocol, the HsLink
( = High Speed Link). This subsystem allows to integrate native, binary encoded
data channels into the setup.

Their encoding and semantics are outside the scope of TCI, but the run-time flow
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2 Concepts of TUB-TCI

Figure 6 Overview on message flows between Subsystems

TCI  trns

TCI  lib

req()

RBD

answer() service()

reply()

deliver()

deliver()

XML

CAS Node Actor

(impl. dependent)

deliver()

TCI  trns

RBQ

BusAdapter => putMsg()
(impl. dependent) (impl. dependent)

Bus
Adapter

Bus
Adapter

Bus
Adapter

BusAdapter => receiveInt()

Factory

control and configuration is completely defined and totally controlled by TUB-TCI.
In figure 6 these channels are indicated by the red arrows (−→). TCI does not make

any assumptions neither on the electrical, nor on the encoding techniques in which a HsLink
is implemented. The TM is responsible for issuing the configuration requests correctly, i.e.
only the TM needs all required information concerning encoding compatibility, supported
bandwidths etc. All this is (still) out of scope of TUB-TCI, but section 5.2.2 will discuss
some possible extensions.

2.8.12 BusAdpts = Bus Adapters

TUB-TCI does try to make least assumptions on the way of operation of the underlying

”
physical“ data transmission layer, — neither in case of the normal XML exchange via

trns, nor in case of the high-speed channels controlled by HsLink.
The structures and behaviors of these lower communication layers are hidden behind

the façade defined by the BusAdpt interface. Their behavior is only partly in scope of
TUB-TCI, namely w.r.t this interface29.

2.9 The Problem of
”
Architectural Information Leaks“

During the work on the design of TUB-TCI, we frequently came across one and the same
architectural problem in rather different appearances:

This problem is given by the fact that a piece of information, hosted in one particular
layer of the architecture, could be of great use if it was known in a function of a quite
different layer. This normally happens for sake of performance, seldomly for sake of clarity.

The claim for a clean system design prohibits the use of such an information from a
different layer. But if we do give the allowance of such

”
peeping“, e.g. because the clean

29Therefore this category of subsystems does not appear e.g. in table 2.
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2.10 Glossary of Central Notions

solution would be too expensive, we call this license an
”
architectural information leak“,

– information
”
leaks“ from one layer into another, where it normally should never appear.

An example: the node topology should (naturally) be totally encapsulated in the trns
subsystem and not visible to the higher subsystems, except (at the top!) the TM. But for
to subscribe an RBQ for an Producer, we have to consider the topology explicitely, and it
would be nice if we were allowed to

”
reuse“ the trns layer information.

Now as we have a formal specification of all layers, we can indeed make this kind of
licenca, because the formulas can show precisely , where such maceration does happen, –
in our text the locations of architectural information leaks are marked by red boxes .

2.10 Glossary of Central Notions

2.10.1 Cited Notions

test case One single programmed definition of sequences of stimuli to, and their expected
reactions from an SUT, cf. [ttc01]. .

test suite A sequence of test cases.
(testing) sandbox An execution area offered by a hardware node, where up-loaded code can

be executed in a secure way with well-defined limited execution permissions.
ATS Abstract Test Suite, the source text of a test procedure, given e.g. in TTCN-3.

The notion
”
ATS“ is also used for the semantics of this program text, cf. [ttc01].

ETS Executable Test Suite, the result of compiling an ATS, i.e. a collection of
segments of executable code, cf. [ttc01].

SUT System Under Test, cf. [ttc01].
PDU Protocol Data Unit.

One unit of information processed or transported atomically.
TTCN-3 A lately defined new programming language for imperative specification of test

procedures, see [ttc01].
GCI Generic Compiler/Interpreter Interface. The single-threaded run-time envi-

ronment for (old) TTCN-2 etc. [GCI96].
IXIT Implementation eXtra Information for Testing.

Some additional parametrization of a test suite, not related to the ATS, but
only to some special compilation, cf. [ttc01].

Module Parameter Single global environmental constant for parametrizing a test case30.
TM Test Manager. An active software which controls test execution, either inter-

actively or batch driven. It may include visualization, report generation etc.,
cf. [tci03].

SRQ, SRQS Service Request, Service Requests.
component A construction in the TTCN-3 language, partly comparable

”
active object“ or

”
thread“ or

”
co-routine“.

2.10.2 Definitions of Notions

TEns
”
Test Ensemble“

A pool of computers, test devices, systems under test and auxiliary message
processing devices, together with the busses connecting them. All these devices
must be under the control of TCI.

Subsystem is the name for
”
(active) objects“ in the TUB-TCI-architecture. The whole

behavior of a TEns during TRun is totally defined by the parallel execution of

30This is apparently not what the reader might is used to!
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2 Concepts of TUB-TCI

all known subsystems.
Each subsystem is an instance of one category. Each category defines the set
of services offered and requested by its instances.
In TUB-TCI there are nine categories of subsystems populating an the upper
application level, namely : RBD, RBQ, Node, Factory, actor, CAS, TM and
QAS.
Below, there are the trns and HsLink subsystems, realizing the underlying data-
link and communication layer.

Client/Server in context of this paper: the names of two rôles taken by two subsystems.
One subsystem acting as

”
client“ starts the C/S relationship by generating a

request() message, which reaches a second subsystem (acting as server) in
form of a service() message. Any reply() message sent back by the server
reaches the client (in case that it is expecting such an answer and waiting)
encoded as an answer() message.

CAS Central Access Server.
One central subsystem which keeps all configuration information. It is address-
able by every other subsystem using a single, fixed and predefined NodeIdent.

Actor All dynamically created (logic) entities. They normally represent some internal
hardware device, like a Port, a Component, a Timer, etc.
While normally being treated as separately categories because of their special capa-
bilities, all RBD and RBQ subsystems also offer all services defined with the actor
category , as the only means for of being created, inquired, deleted and controlled.

actor class Dynamically loaded description of a set of possible actors. Each living actor is
assigned to exactly one actor class. The actor class defines the names, types
and properties of the configuration parameters of its instances, and the set of
run-time operations understood by its instances.

Producer A sub-category of actor representing all devices which can produce events spon-
taneuosly and asynchronously, e.g. incoming ports, timers, switches, sensors
etc.

RBD
”
Run-Time Behavior Dynamic“

An active subsystem realizing the active aspects of an ETS. RBDs have a rich
client-behavior, esp. w.r.t creating and controlling actors and communication
channels.

RBQ
”
Run-Time Behavior Queues“

A passive subsystem, serving as a drain for run-time signals. The only service
it offers (beyond being an actor) is rtOperation(putQ()).

Node Physical computing or testing device, operating independently from other
nodes in the TEns.

NodeServer Exactly one subsystem of the NodeServer category runs during a whole TSess
on each physical node.
It realizes the basic control of the physical device as well as the creation and
deletion of actor subsystems.

NodeIdent Node Identification.
An arbitrarily chosen datum (e.g. text string), which uniquely identifies each
distinct node in the TEns.

QAS The central subsystem which manages the flow of run-time signals (push-
channels and value events()), which mostly are generated by producer and
end in RBQ subsystems.
Virtually there is one single ubiquitous QAS, – on implementation level there
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2.10 Glossary of Central Notions

is one implementation on each node.
trns The underlying transport layer. trns uses a uniform, XML-based message en-

coding which is part of this specification.
HsLink High Speed communication channels. These use hardware specific encoding

on a binary level. They must be allocated and configured in TPrep, and may
be switched on and off in TRun. A HsLink can only be used between sources
and drains which use the same encoding. The management of the different
encodings is out of scope of TCI,see below section 5.2.2.

BusAdpt A bus driver subsystem hosted on a distinct node and connected to one distinct
bus. Onto this bus it can write out messages. This functionality is used by
trns to write out a message to the trns subsystem hosted on a remote node.
A busdriver also receives incoming messages asynchronously, and passes them
to the trns subsystem hosted on its hosting node.

BusId Arbitrary text string which uniquely identifies a BusAdpt w.r.t. its hosting
node.

BusAdr Arbitrarily structured value type. A BusAdr b identifies w.r.t. a given BusAdpt
a uniquely one foreign node n, which must connected to the bus connected to
a.
Each deliver() message sent to a with b given as the target value, will be
delivered to the trns subsystem of this foreign node n.

CASNode The node hosting the CAS.
LUID Limited Unique ID.

A (numeric, e.g. 32 bit) Identifier which uniquely identifies one actor, –
uniquely w.r.t. a certain TEns and a certain Epoque.

TAID Transaction ID.
A (numeric, e.g. 32 bit) Identifier which uniquely identifies all outgoing trans-
actions/messages w.r.t. a given node and a certain Epoque.

TSess An interval of real-time during which
”
test activities“ happen, e.g. test pro-

cedures are prepared, performed, analyzed etc. TUB-TCI makes only one as-
sumptions on the structure of TSess, namely that they consist of a sequence
of intervals, alternating between TPrep-type and TRun-type.

TPrep An interval of real-time in which no test process is being executed, but the
next execution of a test is being prepared .

TRun An interval of real-time in which a test (test-case, test-suite) is being executed,
i.e. code segments (or subsystems) determined by the ETS are currently being
executed on the respective hosting nodes.

epoque An interval of real-time between two system resets. Some subsystems are
only living (and their corresponding identifiers are only valid) during a certain
epoque.
One could distinguish TAID-epoques, LUID-epoques, HsLink-epoques, etc.,
but in the current TUB-TCI-design all these epoques have been unified.

rtOperation() Run-Time Operation, a service which can be requested by an actor sub-
system to perform some activity or change of configuration, even in TRun.
The set of possible rtOperations for a given actor is predefined and fixed by
the definitions given by its actor class.
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2 Concepts of TUB-TCI

Table 1 Overview on Categories of Subsystems
• trns = Transportation Layer.

Basic layer for each communication between all other subsystems and hardware nodes.
• HsLink = High Speed Link.

Basic layer for fast, binary encoded and maybe proprietary communication between producer
and RBQ or RBD and actor subsystems.

• TM = Test Manager.
Only one single instance per TEns, doing the interactive or batch driven control of the overall
testing process.

• CAS = Central Access Server.
Single central instance for registration, look-up and lifetime control for all dynamically cre-
ated subsystems.

• QAS = Queue Access Server.
Conceptually one single (ubiquitous) instance for the management of run-time flow of signals
and values.

• NodeServer.
One subsystem per node, — allows to control the node’s hardware resources and to create
new actors on the node.

• Factory.
One or more on each node, — each Factory is responsible for creating new actors of one
single type (=

”
actor class“).

• Actor.
Dynamically created subsystem, the behavior of which depends on its definition and usage,
both outside the scope of TCI.
The actor category can be called

”
virtual“, since instances can only be built from its sub-

categories, which are . . .
• Producer = signal producing active external device

Active subsystem representing some hardware device, which spontaneuosly generates events.
• RBD = Run-Time Behavior / Dynamic.

Active subsystem, compiled code from an ETS, e.g. active part of a TTCN-3 component-
object.

• RBQ = Run-Time Behavior / Queue.
Passive subsystem as drain for a signal stream, e.g. the passive part of a TTCN-3 component-
object.
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2.10 Glossary of Central Notions

Table 2 Categories of Subsystems specified in TUB-TCI

Abbrev. Name Instances per TEns specified herein?

TM Test Master 1 partially

CAS Central Access Server 1 YES

QAS Queue Access Server 1(n) YES

trns TCI Trans portation Layer 1(n) YES

NodeServer Node Server n (one per Node) YES

Factory Factory of Actors ΣNn

x=N1
Cx partially

RBD Runtime Behavior – Dynamic d partially

RBQ Runtime Behavior – Queues d partially

Actor Actor d partially

n = Number of Nodes in Test System.

d = Dynamically defined by Code and Compiler.

Cx = Number of supported Actor Classes on node x .

ΣNn

x=N1
Cx = Sum of preceding numbers over all nodes in the TEns.

1(n) = Conceptually one single instance,

but one physical implementation per node.

Table 3 Inheritance between Categories of Subsystems

as Server = as Client =

Actor setParam() {}

getParam()

rtOperation()

RBQ = Actor {}

∪ {putQ(),. . .}

RBD = Actor all kinds of

creation and control

of Actors

Producer = Actor {value event(),. . . }

TM {decideNode()} ⊂ RBD
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2 Concepts of TUB-TCI

Table 4 Offered Services

TM 1 called by CAS : getGlobalValue()

decideNode()

CAS 2 called by TM : CASreset()

3 called by RBD : getGlobalParameter()

Intercepted by trns −→ create()

Intercepted by trns −→ delete()

setverdict()

4 called by trns : lookup()

5 called by Factory : registersubactors()

deleted()

desmudge()

NodeServer 6 called by CAS : reset()

loadRouting()

sendHdwStateInfo()

startsession()

stopsession()

DOcreate()

DOdelete()

HScreateinlink()

HSregisteroutlink()

Factory 7 called by NodeServer : DOcreate()

DOdelete()

Actor 8 called by RBD : setconfigparams()

getconfigparams()

rtOperation()

RBQ 9 called by QAS : rtOperation ( putQ() )

HSputQ()

QAS 10 called by RBD : subscribe()

unsubscribe()

HSsubscribe()

HSunsubscribe()

11 called by Producer value event()

HSvalue event()

trns called by trns ( = interface from/to Bus Adapters ) :

deliver()

called by Client (=all but RBQ) : req()

delivered to Server : service()

called by Server : reply()

delivered to Client : answer()

back door called by client : BDopen()

interface called by hosting node of server : BDregisterServer()

(≈ TCP ) called by client and server : BDread()

BDwrite()

BDclose()
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3 Operational Semantics of TCI Subsystems — Messages

and Behaviors

3.1 Mapping of the Meta-Models

This section describes the semantics of TUB-TCI as one large, monolithic transition rela-
tion.

The concepts of subsystems and of their client/server interactions, as introduced in
the last section, (called

”
architectural model“ in this section) will not appear in this formal

parts of the TUB-TCI specification explicitely.
Instead, the execution model is that of a finite set of parallel processes. One or more

of these processes corresponds to a certain subsystem in the architectural model.
Each process (at any time) evaluates some (current) expression. These expressions

are either terms of the
”
message“ data types defined in this section, or some terms of some

”
hosting“ programming language. Respectively, each evaluation of such an expression is

either the application of one of the transition rules defined in the following sections, or an
evaluation step of the hosting language, outside the scope of this specification.

The execution of a SRQ-style interaction between two subsystems in the architectural
model, is here modeled as the evaluation of the corresponding expressions in the contexts
of the two processes corresponding to the involved subsystems.

Each
”
service“ offered by a category of subsystems A and called from instances of

some other category B in the architectural model (as described in the pre-going section) is
represented by a corresponding data type with name SRQS from 〈B〉 to 〈A〉, which will
be defined in the subsections called

”
Messages“ of the following sections.

But these different type definitions are pure conceptual, — effectively there is only
one single definition

TCI Message == (Disjoint Union of all
”
SRQS from to “ data type definitions)

and only instances of this data type are exchanged in the implementation.
So the involved subsystems are given only implicitly, but uniquely: The names of the

meant services are uniquely represented by the constructors of TCI Message. Further-
more, given by table 4, there is an immediate and unique identification of the category of
subsystems offering the corresponding service. In case of more than one instance of this
category (w.r.t. the executing hardware node), the identities of the subsystems are given
explicitely, encoded in the user data of the SRQS. So the means, mechanisms and data
formats for addressing individual subsystems can be rather different for different categories
(e.g. actors by LUIDs, NodeServers by NodeIdents).

The names of the categories involved subsystems do appear in the titles of the sec-
tions, mostly in the form A

n
=⇒ B . Here n is the number of the group of services as given

in table 4, a subsystem of category A is requesting from some B , and the subsystem in
the Box is the one the behavior of which described in the section.

As notation format we use a small subset of the specification language Z (cf. [Spi92]),
which is enhanced by some

”
syntactic sugar“ for ease of reading.

3.2 Aspects of a TCI-System Covered and Not Covered by TUB-TCI

The TUB-TCI-model is only intended to model one aspect of the architecture, which could
be called

”
functional“.

Since, — as already mentioned in the introduction above, — its main purpose is to
serve as a common basis for implementation, formal techniques and human discussion, the
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

formalization has only been driven far enough to present an
”
upper limes“ of permitted

behaviors.
Many other aspects are left to the

”
common sense“ of the reader and to further

discussion. Additional formalization of other well-defined areas and aspects may and shall
happen as soon as a significant profit in productivity can be expected. This strategy could
be called

”
formalization on demand“.

Some of these aspects are given by those which are not covered by (the current status
of) TUB-TCI, for instance:

• Astonishingly there is no positive specification of a minimal behavior for any TUB-
TCI-implementation! E.g. an implementation of a NodeServer is only requested infor-
mally to create an implementing object when receiving a corresponding DOcreate()

request, if this creation would be possible w.r.t. the node’s resources.
It is not specified formally, that eventually some positive answer must come at all:
an implementation always refusing to create any actor subsystems would be a valid
TUB-TCI-implementation w.r.t. this specification.

• All questions of timing, scheduling, process algebra etc. (1) must at the moment
be resolved by common sense and discussed by semi-formal, verbal specification,
(2) may be subject of further research (or subject to the application of well-known
results from other areas of research), and (3) their answers will probably widely vary
with the concrete limitations of the concrete hardware, so they partially cannot be
answered prior to practical experiments.
TUB-TCI is safe and free of dead-locks just because of the simplicity and cycle-
freeness of its atomic operations and because of the simple time-out mechanism on
the lowest trns layer. But please note that there are no further

”
temporal“ rules or

results, e.g. concerning fairness of execution or timing requirements.

3.3 Semantics of the Transformation Relation

The following sections specify single transition steps. Most of them involve only one
process (process context), others involve two of those.

The overall transformation relation is (theoretically) given by the disjunction of all
possible transitions given by these transition steps.

This transformation relation serves as a direct denotation for the set of all maximally
permitted behaviors of all valid TCI implementations by reading it as follows :

1. For all expressions the constructor of which is not defined in this paper, there must
be some matching transformation rule(s) in the actual language binding.

2. If no such transformation can be found, this is a
”
language performance error“.

3. If there are such transformations, one of them must be chosen (externally !) and
applied to the current evaluation state to generate the new evaluation state.

4. For all expressions the constructor of which is defined in this paper, only the trans-
formations defined in this paper are applicable.

5. If there are such transformations, one of them is chosen arbitrarily and applied to
the current evaluation state to generate the new evaluation state.

6. If no such transformation exist, a
”
TCI system error“ is given, i.e. the transformation

rule31

E [[K,K , ζ1 ]] ; E [[K,K , TCIERROR ( ζ1 ) ]]

31The notation is explained in the next section.
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3.4 Basic Model of Execution and Notation

it the general fallback rule for all TCI Messages for which no appropriate transfor-
mation can be found.

7. Such an error may be silently ignored, by further reduction according

E [[K,K , TCIERROR ( ζ1 ) ]] ; E [[K,K , ε ]]

8. Otherwise it has to be signaled to some
”
responsible“ subsystem, e.g. by

E [[K,K , TCIERROR ( ζ1 ) ]]
; E [[K,K , deliver($CAS,K .ownIdent ,−9999, ERR, true,

TCIerror(K .ownIdent ,K .localTime, π, ζ1) )]]

where π is some (opaque) information about the identity and inner state of the
thread which was trying to execute the offending expression ζ1.

3.4 Basic Model of Execution and Notation

3.4.1 Defining Transitions of Execution States

The model of execution is written giving one expression ready for execution, which is
replaced by another expression. The notation is

E [[K,K , ζ1 ]] ; E [[K,K , ζ2 ]]

where ζ1 stands for some expression which is reduced to another expression ζ2. K
stands for the state of the node, on which the process evaluating expression ζ1 takes place.
E stands for

”
evaluation“, K stands for the sum of the states of all other nodes. The latter

is mentioned just symbolically to indicate that the state of all other nodes not mentioned
in the transition formula is unaffected by this transition.

The rare cases where more than one node is involved in a transition, naturally happens
only between two trns subsystems. In this case the nodes and transitions are separated by
comma, like

E [[K,K , ζ1,L, ζ ′1 ]] ; E [[K,K , ζ2,L, ζ ′2 ]]

The notation
E [[K,K , ζ1 | κ ]] ; E [[K,K , ζ2 ]]

imposes some conditions on the state K , which have to be fulfilled to enable the transition
to take place. The construct κ is a conjunction of boolean predicates using the variables
of K and variables contained in ζ1 and ζ2.

All notations listed so far imply that the state K is not altered by the transition.
The notation

E [[K,∆K , ζ1 | κ ]] ; E [[K,K , ζ2 ]]

describes a state transition of the node state K . Here κ is a conjunction of boolean
predicates like above, additionally using the variables of K in a primed form. These
primed variables stand for the values of the variable after the transition took place. It
is part of the semantics, that all variables of K not appearing in a primed form are left
unchanged32.

32For sake of brevity the same syntactic sugar is defined with the mapping construct: An assignment
like f ′(3) = 4 leaves all other positions of f unchanged, and thus is an abbreviation for f ′ = f ⊕{3 7→ 4} .
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

3.4.2 Language Binding

We assume that for each node or subsystem there is a set of arbitrary expressions and
corresponding reducing transitions which make up the

”
programming language“, in which

the behavior of a subsystem can be described. This set of
”
language expressions“ has to

be totally disjoint from all expressions defined in this specification. The corresponding
transitions are not described in this specification. But it is part of the specification that
all expressions defined herein can only be reduced by transitions from this specification.

To model those library calls of the language binding which return results, we assume
that there are some evaluation rules in the hosting language which support

”
nesting“ of

expressions. This can informally be described as

E [[K,∆K , ζI | κ ]] ; E [[K,K2, x ]]

E [[K,K , ζO”(”ζI ”)” ]] ; E [[K,K2, ζO”(”x”)”]]

where ζI represents some expression defined in TUB-TCI, ζO some expression from the
language into which TCI calls are embedded, and x the result of evaluating the TCI call.

3.4.3 Thread and Execution Model

All application level transformations of TCI are specified assuming a multi-thread ensemble
with independent performance of all threads. So the transformation steps specifying the
evaluation of TCI Messages need only be given for the (one and only) executing thread
locally.

The NodeState
”
K“ is shared among all threads running on a distinct node, and each

transformation step defined herein must be performed as a whole atomically w.r.t. all
reads and writes of K and K ′.

On the lower level of trns we need parallelism and sequentialization in the specifi-
cation explicitely , – due to the fact that we have to treat the rendez-vous of two nodes
communicating by a bus and two BusAdapters. For this purpose we introduce the notation

E [[K,K , ζ1 ]] ; E [[K,K , ζ2 ‖+ ζ3 ]]

to denote the
”
spawning“ of a new thread on the same node, i.e. one(1) thread

performing ζ1 is transformed into two(2) threads. Both threads inherit the same
”
language

context“ implicitly. (The NodeState called K is global and unique anyway !)
The notation

E [[K,K , ζ1 ‖ ζ2]] ; E [[K,K , ζ3 ]]

denotates the dual case, when two(2) threads evaluation one expression each
”
at the

same time“ are joined into and continued by only one(1) thread. This operator is not
commutative, because the surviving thread inherits the language context of the first of
the two incoming threads 33.

If both K and L are of type NodeState, then the notation

E [[K,K , ζ1 ‖ L, ζ2]] ; E [[K,K , ζ3 ‖ L, ζ4]] ]]

denotates a transformation step which happens on two(2) nodes synchronously.

33
Please notice that this

”
invisible language context“ can easily be eliminated by integrating its data

into the expression ζ1, i.e. the expression which is
”
waiting“ with the process for the

”
join“ ‖ ζ2 to happen.

This would be a much cleaner design of the meta-model, but there had been no time left for doing this
correction :-(
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3.4 Basic Model of Execution and Notation

This construct will only needed when specifying the
”
electrical“ communication in-

teraction of two nodes, and appears only in two places: Once in the trns interaction
with its BusAdapters (c.f. section 3.6.7), and in the High Speed Channel communication
(cf. 3.13.8).

3.4.4 Extensions to the Z Notation

Incremental Declaration of Schemata : A notation like

Example

——— some definitions ———
. . .

indicates, that the declaration of the schema type will be continued somewhere below
in the text.

A notation like

Example

. . .
——— some definitions ———

indicates, that this is a continuation of a schema definition which had been started
somewhere above in the text.

Common Declaration of two FDTs : Whenever we define an FDT which shall be
used as request message item, we can declare the FDT realizing the corresponding reply
message at the same place, using the notation

RequestType::= request 〈〈. . .〉〉

V reply 〈〈. . .〉〉

V anotherreply 〈〈. . .〉〉

| anotherrequest 〈〈. . .〉〉

V futherreply 〈〈. . .〉〉

Since
”
at last“ all definitions of FDTs which can serve as messages are

”
thrown to-

gether“ into one lager message type definition, and therefore the constructors are chosen
pairwise-disjoint anyway, this

”
anonymous“ declaration of FDT-constructors does not im-

pose any problems.

Denotations of FDTs using schemas : PDUs and auxiliary state variables are written
as free data types. The original Z notation is enhanced by the

”
syntactic sugar“ rule that

the definition of a constructor using a schema type as argument, like

data ::= variant 〈〈[n1 : t1, . . . nk : tk ]〉〉 | . . .

can be treated like

data ::= variant 〈〈t1 × . . . × tk 〉〉 | . . .

when denotating a single value.
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

So we can write
variant (v1, . . . , vn)

to denotate an element of the free type data. The construction of the necessary binding
value, i.e. the value of the embedded schema type, is done automatically.

Dependent types : Dependent typing is written using a
”
meta assignment“ construc-

tion like e.g.

SRQS from RBD to CAS [ a = ActorClass,ActorParams [a] ] ::= . . .

which indicates informally, that the second generic parameter is parameterized with the
value of the first parameter.

Pattern Matching : We want to write decomposition of a schema simply as an equation
between a value of this schema type and a pattern.

The special symbol
”

“ means that this field in the schema is irrelevant and may have
any value and will not be bound to a variable.

Any notation like B0� . . . �Bn , where � is some operator, is meant as abbreviation
for repeated application of this operator to n + 1 arguments.

Calling of
”
Drivers“ : A notation using the symbol -> (either instead of a colon

”
.“

or just instead of whitespace!) indicates the declaration or the application of a function
which will be implemented by a kind of

”
driver method“.

These methods (1) are
”
physical“ interfaces which have to be implemented by all

drivers which implement the schema, and (2) may have side-effects in the internal state of
the realizing driver, which are out of scope of the TCI specification.

There a two variants of declarations led in by -> : Either an identifier is related to a
function signature, or it is declared to be a constructor. In the first case the function can
be used by some transition rule for calculating some value. On the level of specification
these calls are treated as pure function calls, – in contrast the implementation of the call is
out of scope of TCI, as it (1) can read and write some internal state variables in the

”
driver

object“, and (2) can calculate its return values by
”
mystic means“ using its internal state.

In the latter case expressions can be built. The reduction rules of these expressions
are part of the TCIspecification.

Reflection : Since we use (or
”
abuse“) Z schema definitions as declarations for the

isomorphic data types on object level, we need some reflective devices, especially (1) to
store schema types in variables, (2) to lift schema types to functions from Ident to schema,
(3) etc.

3.5 Basic and Auxiliary Types

(0)

Ident
BOOL ::= true | false

TextString

(1)
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3.6 Transportation Layer

Time
Duration

continuous Time
continuous Duration

3.6 Transportation Layer

3.6.1 Principles of Operation (Non-Normative)

Guided by the goals of reliability and ease of implementation, the transportation layer
trns is designed as primitive as possible.

Its internal and horizontal PDU is deliver(). The interface messages from/to ap-
plication layer are req()/answer() on client side and service()/reply() on server side
(see figure 6).

The lowest level transportation layer works
”
IP-like“, i.e. unconfirmed. The ap-

plication layer above can make use of the message transmission functionality offered by
trns either

”
UDP-like“, i.e. unconfirmed, or in a

”
single message and single response“

discipline.
As mentioned above, an interaction on the (conceptual) application level occurs be-

tween two subsystems, one taking the client rôle and the other the server rôle. The client
sends one(1) single request message to the server, — the server may send one(1) single
reply message back.

Additionally there is the mechanism of broadcasting a message to more than one node, e.g.
sending an SRQ to the corresponding servers, hosted on a defined set of nodes in the TEns. For
this sake the routing information loaded on each node contains the definition of broadcast groups ,
which can be used as a target address instead of NodeIdent .

The corresponding reply mechanism allows the client of the broadcast service to wait for a
whole set of nodes to reply, – either all nodes reply in the given time interval, or a timeout occurs.

This broadcasting mechanism for SRQS is primely intended to be used by CAS and TM to
emit service requests which shall reach different NodeServers with least timing screw.

On the concept level of the application layer the
”
servers“ in TUB-TCI are the active

subsystems of the categories RBD, RBQ, CAS, QAS, NodeServer and Producer, offering the
services described in the pre-going section, and listed e.g. in table 4.

On this (lower) transport level a
”
server“ is identified by attributing each request()

expression with (1) the NodeIdent of the node on which the server is hosted, – and (2) a
request message according to the free data type TCI Message.

TCI Message is the sum of all single TCI application level request message definitions
spread over the next sections of this document.

So here servers are identified by the combination of the node, as given explicitely,
and the kind of constructor of the request message, i.e. the

”
subtype“ of TCI Message,

to which the request message belongs. There is a unique mapping from these types to one
category of subsystems which offers the appropriate service. If there are more than one
instances of this category on the executing node, then the target instance is identified by
user-level data contained in the SRQ, the coding and meaning of which differs with the
messages.

3.6.2 Selection of Confirmation Mode, Timeout and Broadcasting

Each request() sent by a client must be attributed with a further value, namely (3) the
timeout indication.

Either the value special $noresp is given. In this case the request is unconfirmed,
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

the client continues its thread without waiting, and any reply generated by the server’s
execution is discarded by the trns subsystem on the server’s node. In this case, on the
client side there is no information at all about the further processing of the message.

Alternatively a wait(d) can be given, with d being any valid duration value. In this
case the thread of the client is suspended and will be reactivated to evaluate the result
of the call. This is either an answer() message received from the server, or the time out
signal answer($TIMEOUT), generated by the local trns subsystem.

The fact whether the client requests a confirmation or not, influences the thread
scheduling on the client’s side immediately, since the client thread will be suspended, or
not.

Additionally this fact is coded into the message sent to the server. If a server provides
a reply, it does so on every call. It is the job of the trns subsystem on the server’s node to
discard this reply message in case that no confirmation is requested by the client, thereby
avoiding unnecessary traffic.

Again for sake of reliability, there is only one single source of timeout, namely on the
trns subsystem on the client side (i.e. the side originally generating the transaction id of
the SRQ).

3.6.3 TAIDs

Central concept is the TransactionId TAID . TAIDs are assigned to transactions autar-
kicly by the node which hosts the client of the SRQ. Given a certain taid-epoque and the
identity of the node, which originally generated the TAID, each TAID uniquely identifies
a certain SRQ .

TAIDs are used to link each reply() message to the corresponding request().

3.6.4 Messages

(2)

MsgType ::= REQ | REQNW | REPLY | BC | ERR

(3)

TAID

(4)

NodeIdent

(5)

NodeIdent X == NodeIdent ∪ {$nodeNotInitialized}

(6)
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3.6 Transportation Layer

Msg G [ Message ] ::= deliver 〈〈 [ target : NodeIdent ∪ BCgroup ∪ {$CAS}

origin : NodeIdent

taid : TAID

msgtype : MsgType

noreply : BOOL

msg : Message

]〉〉

// This is an example for the principle of
”
redundant encoding“ (cf. section 2.1), since the message

component
”
noreply“ could be concluded from the value of msgtype.

(7)

Msg == Msg G [TCI Message ]

(8)

RqTiming ::= $noresp

| wait 〈〈 Duration 〉〉

| waitset 〈〈 Duration, P NodeIdent 〉〉

(9)

ReplState ::= timeout 〈〈 Time × P NodeIdent 〉〉

| inf

| timeoutsignaled

| replydone

(10)

BCgroup == N

(11)
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

UserRq G [ Message ] ::= req 〈〈 [ n : NodeIdent

c : RqTiming

m : Message

]〉〉
| broadcast 〈〈[ b : BCgroup

i : TAID

m : Message

]〉〉
| service 〈〈[ o ::i : NodeIdent × TAID

m : Message

]〉〉
| reply 〈〈[ o ::i : NodeIdent × TAID

m : Message

]〉〉
| answer 〈〈[ m : Message ∪ {$TIMEOUT} ]〉〉

]〉〉
(12)

BusMsg G [m] ::= busmsg 〈〈[ next : NodeIdent

last : NodeIdent

data : Msg G [m] ]〉〉
// This redundant encoding (cf. above 2.1) is for reliability and diagnosis only !

(13)

UserRq == UserRq G [TCI Message ]

3.6.5 State Space

(14)

Bus

BusAdr [Bus]

(15)

BusAdapterIn

// These values are hard wired into the implementation of the Driver

bus : Bus
busAdr : BusAdr

-> watchBus
-> incomingMessage (BusMsg)
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3.6 Transportation Layer

(16)

BusAdapterOut

// These values are hard wired into the implementation of the Driver

bus : Bus
busAdr : BusAdr

-> putMsgToBus (BusAdr ,BusMsg)

(17)

BusAdapter == BusAdapterIn ∪ BusAdapterOut

(18)

NodeState
// These values are hard wired into the implementation of TCI

// running on a given node :

adapters : P BusAdapter
localtime : Time
bootListeners : PBusAdapter

bootListeners ⊂ BusAdapterIn ∩ adapters
. . .

(19)

MapEntry ::= drain 〈〈Adapter × BusAdr × BOOL 〉〉

| hop 〈〈NodeIdent〉〉

// Please notice that a BusAdr needs not to be the same when different output bus adapters
(normally, but not necessarily from different nodes) address the same node on the same bus !

(20)

RoutingTable

CASident : NodeIdent
gate : NodeIdent 7 7→ MapEntry
broadcasts : BcGroup 7 7→ P NodeIdent

(21)
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

NodeState
. . .
// These values are assigned dynamically by PowerOnReset and CAS :

ownIdent : NodeIdent X
routingTab : RoutingTable
. . .

(22)

NodeState
. . .
// These values are assigned dynamically when TCI-trns is running :

// Client’s site:

ta : TAID 7 7→ ReplState // a concrete implemention can/will store the whole process context

// here for all executions of waitresp().

// Server’s site:

suppresreply : NodeIdent × TAID 7 7→ BOOL
. . .
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3.6 Transportation Layer

3.6.6 client=⇒ trns =⇒server and server=⇒ trns =⇒client

kK == K .ownIdent
kC == C.ownIdent
M ∈ Message \ dom reset()

B ∈ BcGroups
T ∈ BOOL

(23) // Client does initial non-broadcast request, – unconfirmed and confirmed :

E [[K,K , req(n, $noresp,M ) ]]

; E [[K,∆K , ε ‖+ deliver(n, kK , j ,
{

ERR
REQNW

}

, true,M )

| j 6∈ dom K .ta
∧ K ′.ta = K .ta ∪ { j 7→ inf} ]]

(24)

E [[K,K , req(n, wait(t),M ) ]]
; E [[K,∆K , waitresp(j ) ‖+ deliver(n, kK , j , REQ, false,M )

| j 6∈ dom K .ta
∧ K ′.ta = K .ta ∪ { j 7→ timeout(c + K .localtime, {kK } ) } ]]

(25) // Client does initial broadcast request, – unconfirmed and confirmed :

E [[K,K , broadcast(B , $noresp,M ) ]]
; E [[K,K , ε ‖+ deliver(B , kK , j , BC, true,M )

| j 6∈ dom K .ta
∧ K ′.ta = K .ta ∪ { j 7→ inf} ]]

(26)

E [[K,K , broadcast(B , waitset(t ,S ),M ) ]]
; E [[K,∆K , waitresp(j ) ‖+ deliver(n, kK , j , REQ, false,M )

| j 6∈ dom K .ta
∧ K ′.ta = K .ta ∪ { j 7→ timeout(c + K .localtime,S ) } ]]

(27) // Server procedure called on server node :

E [[K,K , deliver(kK , o, i , REQNW, true,m) ]]
; E [[K,∆K , service(o ::i ,m) | K ′.suppresreply(o, i) = true ]]

(28)

E [[K,K , deliver(kK , o, i , REQ, false,m) ]]
; E [[K,∆K , service(o ::i ,m) | K ′.suppresreply(o, i) = false ]]
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

(29)

E [[K,∆K , deliver(B , o, i , BC,T ,m)
| {B0, . . . ,Bb} = K .routing .broadcasts(B) \ {K .ownIdent}
∧ K .ownIdent ∈ K .routing .broadcasts(B)
∧ K ′.suppresreply(o, i) = T ]]

; E [[K,K , service(o ::i ,m)
‖+ deliver(B0, o, i , BC,T ,m)
‖+ . . .
‖+ deliver(Bb , o, i , BC,T ,m) ]]

(30)

E [[K,K , deliver(B , o, i , BC,T ,m)
| {B0, . . . ,Bb} = K .routing .broadcasts(B)
∧ K .ownIdent 6∈ K .routing .broadcasts(B) ]]

; E [[K,K , deliver(B0, o, i , BC,T ,m)
‖+ . . .
‖+ deliver(Bb , o, i , BC,T ,m) ]]

(31)

E [[K, C, deliver(kC , o, i , ERR, ,m) ]]
; E [[K,∆C,

// a TCI system/consistency error occurred somewhere in the TEns.

// CAS and TM may take adequate means.

]]
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3.6 Transportation Layer

(32) // Server sends back reply message :

E [[K,K , reply(o ::i ,m) | K .suppresreply(o, i) = true ]]
; E [[K,K , ε ]]

(33)

E [[K,K , reply(o ::i ,m) | K .suppresreply(o, i) = false ]]
; E [[K,K , deliver(o, kK , i , REPLY,true,m) ]]

(34) // Reply message or timeout reaches the client :

E [[K,∆K , waitresp(i) ‖ deliver(kK , q , i , REPLY, ,M )
| K .ta(i) = timeout( , {q})
∧ K ′.ta(i) = replydone ]]

]]

; E [[K,K , answer(M )]]
(35)

E [[K,∆K , waitresp(i) ‖ deliver(kK , q , i , REPLY, ,M )
| K .ta(i) = timeout(t ,S )
∧ S ′ = S \ {q}
∧ S ′ 6= {}
∧ K ′.ta(i) = timeout(t ,S ′) ]]

; E [[K,K , ε]]
(36)

E [[K,∆K , waitresp(i)
| K .ta(i) = timeout(t , )
∧ t > K .localtime
∧ K ′.ta(i) = timeoutsignaled ]]

; E [[K,Kanswer ($TIMEOUT)]]

(37)

E [[K,K , deliver(kK , , i , REPLY, ,M ) | K .ta(i) = timeoutsignaled ]]
; E [[K,K , ε ]]
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

3.6.7 trns=⇒ busAdpt =⇒trns and busAdpt
electric

=⇒ busAdpt

outport : NodeState × NodeIdent 7 7→ Adapter × BusAdr

outport(K ,n) =

{

(D , b) if K .routingTab.gate(n) = drain(D , b, )

outport(K ,n ′) if K .routingTab.gate(n) = hop(n ′)

X ∈ K .adapters ∩ BusAdapterIn
M ∈ Msg G
M ′ ∈ BusMsg G

(38) // send message to the gateway node as given by the routing table:

E [[K,K , deliver(M )
| M = (t , o, i , x , y ,m)
∧ t ∈ NodeIdent
∧ t 6= K .ownIdent
∧ (DK , a) == outport(K , t) ]]

; E [[K,K ,DK -> putMsgToBus (a, busmsg (t ,K .ownIdent ,M ) ) ]]

(39) // special treatment for $CAS :

E [[K,K , deliver(M )
| M = ($CAS, o, i , x , y ,m)
∧ K 6= C ]]
∧ M ′ = (K .routing .CASident , o, i , x , y ,m) ]]

; E [[K,K , deliver(M ′) ]]

(40) // two nodes on one bus perform a data transmission:

E [[K,K ,DK -> putMsgToBus (a,M ′) ‖ L,DL -> watchBus
| DK ∈ K .adapters ∩ BusAdapterOut
∧ DL ∈ L.adapters ∩ BusAdapterIn
∧ DK .bus = DL.bus
∧ DL.busAdr = a]]

; E [[K,K , ε ‖ L, DL -> incomingMessage(M ′) ]]

(41)

E [[K,K ,X -> incomingMessage ( busMsg(K .ownIdent , ,M ) ) ]]
; E [[K,K , deliver(M ) ‖+ X -> watchBus ]]

3.7 Application and Transport Layer : General Node State Control

3.7.1 Principles of Operation (Non-Normative)

One of the most ugly problems to formalize is the behavior of a complex (and only gener-
ically known!) distributed system w.r.t. powering on, initialization and reset (in the
following subsumed as init operations).

This is because these init operations (1) let single nodes of the TEns go into or
through some naturally undefined or pre-defined state, and (2) because they influence all
the different layers of the architecture, which normally should only be specified by cleanly
separated and closed mathematical systems.
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3.7 Application and Transport Layer : General Node State Control

Figure 7 Booting Cycle of a single Normal Node, and of the CAS node
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TUB-TCI must implement a rather defensive way of resetting , which re-initializes
all resources involved in communication in a hard manner. Only this — together with
a topologically correct schedule, see below, — allows a well-defined reset behavior, even
with most heterogenous hardware collections, — e.g. w.r.t. the deletion of pending PDUs
from all the different pipelines and caches.

Furthermore we demand that always all nodes in a TEns must be reseted, and after-
wards all nodes must be re-initialized! Every partial reset of a TEns may yield unspecified
results!

The boot cycle for a single node is rather simple, cf. figure 7: Either a power-up or
an explicit reset() SRQ will switch the node into an reset active state.

In this state trns is not yet/no longer active. Instead, the node listens to some busses
for

”
physically“ incoming messages. (The corresponding BusAdpts are collected in the set

bootListeners.)
The only message understood in this state is loadRouting(). The service procedure

for this SRQ loads the routing table of the node, starts the trns subsystem, and then
switches the node to an operating state. From now in trns is running normally, as
described above.

The overall power up sequence for a TEns is mainly determined by the physical
topology of bus linkages and boot listeners. This is because the operability of the trns
layer between two nodes is not given, until all nodes forming the physical communication
path between them are in the operating state, i.e. have received an explicit initialization
message from CAS. The resulting problems can easily be seen when looking at figures 8
and 934.

34This requirement is one ugly instance of the general problem of
”
architectural information leak“ men-

tioned above, see 2.9.
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

So the initialization sequence has to be planned rather carefully by some scheduling
algorithm, using topology information only known to TM.

But on physical level the CASNode is the only root of the physical network, from
which all other nodes are reachable. So the boot sequence has to be performed by CAS,
but based on the topology information provided by TM.

Principally the initialization sequence is as follows :

1. On every node in a TEns (except the CAS-node), there must be some auto-start
facility. This automatically starts the execution of the local TCI implementation
demon. This can happen e.g. as soon as the operating system has been restarted.
The liveness of the demon should be watched by the OS. It could be restarted when
a certain reset button is pressed physically etc.

2. After this local TCI implementation has completed its internal initializations, it
switches to the uninitialized state

”
reset active“.

3. In this state there is at least one bus input adapter
”
listening“ on its bus, and waiting

for a loadRouting() message to arrive. These bus input adapters are called
”
boot

listeners“.
4. On the CAS node there is no autostart of TCI, but there must be a TM running.
5. The TM explicitely starts the CAS, thereby supplying topological and routing infor-

mation about each individual node in the whole TEns.
6. The CAS initializes the TCI library, e.g. the routing table, running on its own node.
7. Then the CAS arbitrarily picks one of those nodes of the TEns which it can already

reach, and tries to initialize it.
At the beginning only the nodes connected via a single bus directly to the CAS node
are reachable from the CAS, simply because all other nodes do not have any routing
information yet.
So the CAS sends a loadRouting() request to one of these reachable nodes.

8. When receiving a loadRouting() message on one of its boot listeners the receiving
TCI implementation initializes its routing tables and its own NodeIdent, initializes its
trns software and all selected bus drivers and switches into operating state. From
now on this node is able to receive messages and to route messages to the other
nodes to which it is connected.

9. Since now more nodes may have become reachable, CAS can return to step 7, – until
all nodes in TEns are initialized.

The process of resetting is even more critical :

1. CAS must send a reset() request to some (arbitrarily chosen) node, which is not
needed to reset any other node, i.e. to reach any node which is still in the state
operating.
After reset() has been received and evaluated, the trns layer of this node does not
work any more at all, until a loadRouting() has been received on a boot listener,
as described above.
So if you shut down the wrong node, you may have to walk to the equipment and
press a reset button physically ;-[

2. After one node has been put to reset active, some more nodes may have been
become free for being reseted, according to the condition in step 1.

So step by step all nodes are put into the reset active state, as depicted in figure 9.
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3.7 Application and Transport Layer : General Node State Control

As soon as the last node is in the reset active state, the old TEns does not exist
any more, and a new TEns can be established by rebooting the corresponding nodes by a
procedure as described above.

Please notice, that the situation is (should be) exactly as immediately after the first
powering on of the whole

”
hardware farm“, since every reception of a reset() messages

puts any node into exactly the same state as its first power up does ! This is according to
some of the basic design principles for TUB-TCI, namely simplicity and robustness.

3.7.2 The Confirmation Problem with reset() and loadRouting()

Above we mentioned the
”
architectural leak“, that the evaluation of certain SRQ messages

affects the infra-structure needed to evaluate SRQ messages, cf section 2.9.
This has the ugly consequence that there are situations in which it is impossible to

get a direct confirmation for an init operation, i.e. any corresponding reply() message.
Therefore the loadRouting() SRQ is provided by TUB-TCI in two flavors: confirmed

or unconfirmed. A reset SRQ is always unconfirmed, as explained below.
Let us look at figure 8, and shall the first node initialized by the TM (running on

the CASnode) be called N1, the second one N2. Then, since the trns of N2 is not yet
operating, but is required for a communication from N1 to CASnode, N1 has to be sent
its loadRouting() message unconfirmed . Indeed the TM does not know, if and when
this booting of N1 will have succeeded. TM will probably use some timing heuristics to
determine some waiting duration.

After waiting some time the TM tries to boot N2, now requesting a confirmation.
This is possible, because the trns subsystem needed for communication form N2 to TM
should have been established.

If booting of N2 succeeds and a positive confirmation arrives, then CAS knows, that
both boot operations (of N1 and of N2) have succeeded. (If N1 had not succeeded, then
N2 would not even have received the loadRouting() SRQ).

With reset it is – again – worse:
Even on a pure conceptual level it is nearly impossible to model a

”
last reply“, i.e.

a message which is guaranteed to be sent as the last activity of a system which is going
down totally and switching all hardware in a defined reset state.

Such a reset is a singularity , a kind of
”
black hole“ in the universe of our TEns.

It is nearly impossible to specify the behavior when approaching such a singularity in
detail, while at the same time demanding its easy implementability with very different
technologies.

So there cannot be any (direct) confirmation sent as a reply on a reset request.
What can be done, is to save a single datum to survive the

”
Big Bang“, e.g. in a

flash ROM or a CMOS device. By this we support an indirect confirmation to reset: Each
reset command is attributed by a distinct

”
reset sequence marker“, the value of which can

be chosen arbitrarily by the CAS. The value of the last received reset sequence marker
survives the (otherwise total) reset of the node. When rebooting a node with confirmation,
the reset marker of the last reset command received (and performed) is contained in the
reply to the boot request. When a node must be rebooted without confirmation (for the
reasons mentioned above), a special inquiry message allows CAS to read the value of the
last reset marker explicitely.
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

Figure 8 TCI Boot Sequence Rippling through a Test Ensemble.

CASNode

Figure 9 Reset Commands and (theoretically possible) Confirmations Rippling through
a Test Ensemble.

CASNode

3.7.3 Possible Alternatives and Variants of Design Decisions

This reset/boot concept induces some overhead and may – in special settings – lack per-
formance. Some possible variants are described in section 5.1.2.

Please notice that it is one of those
”
minor design decisions“, that there is neither

a means (1) for altering the routing table of a distinct node without resetting it, nor (2)
for performing a reset of a node while preserving the routing info.

While both possibilities seem useful w.r.t. practical operations, they are not neces-
sarily part of a slim kernel design as presented herein.

3.7.4 General Purpose reply() Messages

(42)

ErrorCode

(43)
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3.7 Application and Transport Layer : General Node State Control

GF ::= generalFailure 〈〈 [ cod : ErrorCode

txt : TextString ]〉〉
GS ::= OK

| generalSuccess 〈〈 [ DATA ]〉〉
GR == GF ∪ GS

3.7.5 Messages

(44)

ResetEpoque

$powon ∈ ResetEpoque

(45)

SessionId

(46)

ResetLevel TCI ::= all

| . . .

(47)

ResetLevel host [NodeClass]

$noreset ∈ ResetLevel host

(48)

SRQS from CAS to Node ::=
loadRouting 〈〈[ ownIdent : NodeIdent

routing : RoutingMap ]〉〉
V initComplete 〈〈ResetEpoque × Time〉〉

| inquireResetInfo

V resetInfo 〈〈ResetEpoque × Time〉〉

| inquireHdwStateInfo〈〈 [ select : N ]〉〉

V hdwInfo 〈〈 DATA 〉〉

| startsession〈〈[ sessionId : SessionId

maxDuration : Duration ∪ {⊥}]〉〉
V GR

| stopsession

V GR

| reset〈〈 ResetEpoque \ {$powon} × ResetLevel TCI × ResetLevel host〉〉

(49)
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

Verdict ::= vERR | inconc | failed | passed

vERR < inconc < failed < passed

(50)

SRQS from RBD to CAS ::=
setVerdict 〈〈[ verdict : Verdict

origin : LUID

sourceLocator : DATA [origin]

localtime : Time ]〉〉
V GR

getGlobalParameter 〈〈 a = Ident〉〉

V gobalParamValue 〈〈 DATA [a]〉〉

// Please notice that the values of type LUID are used to identify/address/represent all living
subsystems from the actor category, — here: the RBD raising the verdict. LUIDs and will be
introduced below in section 3.8.4 on page 57.

3.7.6 Additional State Space

(51)

TM

-> getGlobalParameter : a = Ident → DATA [a] ∪ GF

. . .

(52)

M : TM

(53)

NodeState
. . .
resetMark : ResetEpoque
resetTime : Time
bootTime : Time

sessionID : TextString ∪ {⊥}
sessionStarted : Time
. . .
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3.7 Application and Transport Layer : General Node State Control

(54)

NodeState Init
NodeState
K .ownIdent = $nodeNotInitialized

K .routingTab = {}
K .ta = {}
K .suppressReply = {}
K .sessionId = ⊥
K .resetTime = K .localTime
. . .

(55)

CASstate
nodes : P NodeIdent
// busses : PBus
// adapters : P BusAdapter
nodesRouting : NodeIdent 7 7→ RoutingTable
bootingAdapters : P BusAdapter

bootingAdapters =
⋃

{x ∈ nodes • x .bootListeners }

. . .

(56)

C : CASstate
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

3.7.7 CAS
2

=⇒ NodeServer

K : NodeState
{D0, . . . ,Dn} == K .bootListener
{I0, . . . , Im} == K .adapters ∩ BusAdapterIn
AllBootListenersListening == D0 -> watchBus ‖+ . . . ‖+Dn -> watchBus
AllInputAdaptersListening == I0 -> watchBus ‖+ . . . ‖+ Im -> watchBus

(57)

E [[K,∆K ,PowerOnReset | K 6= C]]
; E [[K,K ,HOST POWERING ON]]
; E [[K,K ,PerformReset ($powon)]]

(58) // On power up all transport data is reset,

// and at least one bus input adapter (
”
boot listener“) starts listening:

E [[K,∆K ,PerformReset(x )
| K 6= C
∧ K ′ = [NodeState Init | resetMark = x ] ]]

; E [[K,K , AllBootListenersListening ]]

(59) // Initialization messages are recognized by
”
physical“ addressing.

// service() will not be reached since there is no valid K .ownIdent .

E [[K,∆K , deliver( , , i , REQ, false, loadRouting (N ,R, true))
| K .ownIdent = $nodeNotInitialized

∧ K ′.ownIdent = N
∧ K ′.routingTab = R ]]

; E [[K,K , deliver($CAS,N , i , REPLY, ,M ′) ‖+ AllInputAdaptersListening
| M ′ = initComplete(K .resetMark ,K .localTime) ]]

(60)

E [[K,∆K , deliver( , , i , REQNW, true, loadRouting (N ,R, false))
| K .ownIdent = $nodeNotInitialized

∧ K ′.ownIdent = N
∧ K ′.routingTab = R ]]

; E [[K,K ,AllInputAdaptersListening ]]
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3.8 General Concepts concerning Actor Subsystems

(61)

E [[K,K , service( , reset(x , all,$noreset) )
‖ AllOtherRunning TCI ThreadsOnThisNode ]]

; E [[K,K ,PerformReset(x )]]

(62)

E [[K,K , service( , reset(x , all,R) )
‖ AllOtherRunning TCI ThreadsOnThisNode ]]

; E [[K,K ,RESET HOST SYSTEM (R)]]
; E [[K,K ,PerformReset(x )]]

(63)

E [[K,K , service (o ::i , inquireResetInfo ) ]]
; E [[K,K , reply (o ::i , resetInfo(K .resetMark ,K .resetTime) ) ]]

(64)

E [[K,K , service (o ::i , inquireHdwStateInfo (n)) ]]
; E [[K,K , reply (o ::i , hdwInfo(nodeServer -> inquireHdwStateInfo(n) ) )

(65)

E [[K,∆K , service(o ::i , startSession(i , d))
| K ′.sessionId = i
∧ K ′.sessionStarted = K .localTime ]]

; E [[K,K , reply (o ::i , OK)]]

(66)

E [[K,∆K , service(o ::i , stopSession(i , d))]]
; E [[K,K , reply (o ::i , OK)]]

(67)

E [[K,∆K , service(o ::i , getGlobalParameter(n))
| d = M -> getGlobalParameter (n)
∧ n 6∈ GF

; E [[K,K , reply (o ::i , gobalParamValue(d))]]

3.8 General Concepts concerning Actor Subsystems

3.8.1 Actors, Actor Classes and Factories

A mentioned in the survey above (section 2.8.2), all subsystems which must be dynamically
created are instances of the actor category. Dynamic creation is e.g. required by the need
to reflect the changes in the physical world (e.g. concerning the types and configurations
of node-internal hardware resources) when moving one ATS between executing nodes of
different types and capabilites.

Actor subsystems can be characterized by the following facts:

• Each actor subsystem must be created explicitly by an RBD sending a create()

message to CAS35.
• Every actor is permanently hosted on one distinct node, its

”
hosting node“.

35Or directly to a NodeServer or a factory, if the variants listed in 5.1.3 are chosen.
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

• Each actor is throughout its lifetime instance of one distinct actor class.
• To create an actor subsystem of a given actor class on a given node, a corresponding

factory for this actor class must be hosted on this node.
• The current state of an actor is totally determined by the the current states of a

fixed collection of configuration parameters.
• Each actor is controlled throughout its lifetime by one or more RBDs using the

services offered by this actor.
• Each actor must offer the services for changing the current values of its configuration

parameters, and for inquiring their current values.
• Each actor may offer the service of performing some run-time operations. The

execution of such a rtOperation() service mostly corresponds to some activity on
the

”
physical semantics“ of the represented hardware device.

These services may either be defined to return a result, or may only be called un-
confirmed.

• Each actor class totally defines for all of its instances (1) the names, types and
constraints of all configurationparameters, as well as (2) the set of supported run-time
operations,

3.8.2 Configuration Parameters

Central component of each actor class definition is the definition of the configuration pa-
rameters. The simple half of this definition can be seen as a

”
table“ containing one column

for (1) the name of the configuration parameter, (2) its basic type, (3) the
”
parameter

change allowance mode“, and (4) a default value, which may be undefined. In such a
table each configuration parameter takes one line entry, – the first column containing only
unique values, i.e. serving as a

”
key field“ in the sense of a relational data base. Please

refer to section 3.9.5 for an illustrative example.
The

”
parameter change allowance mode“ of each configuration parameter determines

in which system phases a change of this parameter is allowed:

CO Cannot be set at all, is read-only and constant throughout the lifetime of the actor.
RO Cannot be set at all, is read-only, but not guaranteed not to change.
WI Can be written only once by giving it initially in the create() request.
RW Can be altered as long as the

”
run-time“ (TRun) has not yet been started.

RWRT Can always be altered, even in
”
run-time“ (TRun).

The more complicated half of the configuration parameter definition is the specifica-
tion of the legal values for the configuration parameters. These can not be given in such a
simple line-by-line basis, since it must be possible to restrict the legal values to a certain
set of combinations. So constraints involving more than one parameter value must be
denotatable. For this sake we use Z-schemata, as described below in section 3.9.

Let cp-map be a user-supplied data structure, which maps the set of configuration
parameter names of a given actor class to none, one or more than one valid value each.
Let injective cp-map be a cp-map, which maps configuration parameter names to at most
one valid value each. Then the definition of the configuration parameters is relevant for
the user when requesting different services:

• When sending a create() request, a cp-map must be supplied by the calling RBD,
which describes the initial state, requested for the newly created actor subsystem.
This map must contain a (single, unique) value for each configuration parameter
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3.8 General Concepts concerning Actor Subsystems

which has a default value of ⊥ and is not of allowance type CO or RO. Additionally
it may give a value (or even a set of values) for any other parameter which is not of
allowance type CO or RO.
The overall combination of parameter values induced by the user-defined cp-map
should be a valid combination. Otherwise the create() request may be totally
rejected, or parts of the requests contained in the cp-map entries may be disregarded.

• When requesting the setconfigparams() service, a cp-map must be supplied, indi-
cating the new parameter values to which the actor shall change its state. Depending
on the parameter change allowance mode of the parameters involved, these changes
are possible in TPrep, maybe also in TRun. This service will always be is rejected if
the values in the cp-map are inconsistent or infeasible.

• When calling getconfigparams() on a given actor, the momentary design returns
a complete injective cp-map , containing the current values of all configuration pa-
rameters of that actor.

The setconfigparams() service can called both unconfirmed or confirmed. The
getconfigparams() service must be called confirmed36.

3.8.3 Run-Time Operations

The run-time operations (rtOperations) are used by an RBD to control the operation of
an actor during run-time, or to perform some external operation on a physical device via
its representing actor subsystem.

When defining an actor class, a free data type has to be given which describes all
supported real-time operations by giving their request message formats, maybe together
with the possible reply message formats.

All implementations of a driver/factory for that actor class have to decode this mes-
sage type and to perform the appropriate activities.

Run-time Operations can be defined both unconfirmed or confirmed, and have to be
called as defined.

3.8.4 Addressing of Actors for performing operations, – the concept of LUID

Whenever a new actor is created, it is assigned a limited unique id (= LUID). This LUID
is unique within a certain interval of real-time (a so called epoque) within the whole TEns
(i.e. independently of the hosting nodes).

An RBD which wants to request a service from an actor ( setParam(),getParam()

or rtOperation()) must address this actor by its LUID.
On the level of implementation there are three sub-cases :

1. The hosting node of the given id is known, and it is the local node itself.
In this case the actor is hosted

”
here“. Therefore the actor class is known, the

appropriate driver/factory can be identified and all requests can be fulfilled by an
API-call to the according driver/factory.

2. The hosting node of the given id is known, but it is not the local node itself.
Then the request has to be passed on to the hosting node (using trns, according to
the local routing table).

3. The hosting node of the given id is not known.

36Naturally, because the reply will contain the requested information.
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

In this case a lookUp() request is sent to the CAS, which returns either an error
indication or the NodeIdent of the hosting node37. This information is added to the
local cache and must never again be fetched from CAS for the duration of the epoque.
Now that the hosting node is known, proceed as in 1. or 2.

3.8.5 Push-Channels and the QAS subsystem

All
”
spontaneuosly“ active hardware devices (like in-ports, out-ports, timers, sensors etc.)

must be represented by instances of
”
producer“. This is a category of subsystems which

enhances the category actor: The offered services are the same, but additionally a producer
has an active behavior acting as a client and generating value event() messages: When-
ever e.g. a driver’s demon polling the hardware, or an interrupt handler activated from
outside, detects the incoming of a datum or the occurrence of an event, it calls the
value event() service, which is offered by the QAS subsystem.

The (ubiquitous) QAS subsystem realizes the
”
push-channels“, and distributes the

signal event to all currently subscribed drains hosted on the same node, and maybe to
remote nodes which host further drains.

The final drains for all value event() messages are always some (or no) subsystems
of RBQ category, i.e. subsystems realizing the passive

”
signal receiver“ semantics. A

classical example is the famous
”
input queue“ occurring in the definition of the

”
snapshot“

executional semantics of the TTCN-3
”
alt“ statement [ttc01].

The QAS server is necessary, because a producer subsystem is just producing its
valueEvent()s, but is not aware which RBQs currently are consuming its event stream,
i.e. need to be notified. This is because these connections may be under programmed
control, i.e. change dynamically during the execution of the ETS. This dynamic control is
realized by subscribe() and unsubscribe() messages, by which an RBD can make any
RBQ38 to receive (from now on) all value events from a given actor .

3.9 Actor Class Dynamic Declaration Interface

3.9.1 Principles of Operation (Non-Normative)

As mentioned above, the specification of TCI does not define the set of possible actor
classes, but provides the means to plug-in definitions of new actor classes and the corre-
sponding factories.

The declaration of an actor class on the conceptual level consists of the definitions of
(1) the collection of configuration parameters, and (2) the supported run-time operations.

On the implementation level additionally (3.a) the code of a corresponding factory
and for the driver functionality has to be defined, (3.b) compiled for and installed on
each node, on which the corresponding actor subsystems shall be created, and (3.c) made
known to their NodeServers.

Please notice that in the current version of TUB-TCI the steps (1) and (2) are purely
conceptual . A proposal for lifting the actor class definitions to the level of object language
are discussed in 5.2.1.

Please notice that in the current version of TUB-TCI the realization of step (3)
is left totally unspecified. From its (current) point of view the identification process of
the distinct factory which corresponds to a given create() message is hard-wired into the

37Maybe together with additional information, e.g. indicating the actor’s actor class.
38

Please notice that the tight connection of one RBQ and one RBD to form one component, is not
realized in TUB-TCI, but done on the level of using it.
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3.9 Actor Class Dynamic Declaration Interface

nodeServer. Section 5.2.3 proposes a further specification to describe classes of hardware
nodes and their capabilites. This would include clean means for declaring the hosted
factories for a given node.

The definition of an actor class is done by creating a Z-schema called the defining
schema. This schema must specify (1) the configuration parameters (PI ) and (2) the sup-
ported Run-Time Operations (RT ). It can be built either from scratch, or by derivation.

If the defining schema is built from scratch, it must include the schema
ActorClassDescription, as given below. A Free Type has to be assigned to the variable
RT , and a list of ParameterInfo has to be built and assigned to the variable PI . The
latter is supported by the function unpack, which initializes a ParameterInfo with pairs of
name and type extracted from a schema.

If the new actor class is a derivation from an existing class without introducing new
configuration parameters, the new schema simply needs to include the schema of the class
derived from. Otherwise, when additional configuration parameters or run-time opera-
tions are necessary, the schema can be initialized by including the schema valued function
applications extendparams(s, p), extendops(s, r), or extend(s, p, r), where s is the schema
representing the class to inherit from, p is the schema representing the additional config-
uration parameters, and r is a data type representing the added Run-Time Operations.
// Please notice that this

”
definition by inclusion“ does not induce any a priori meaningful

”
super-type/sub-type“ relationship between the involved actor classes !

Each factory which is to be integrated into the TCI system must be specified by a
further schema. This must combine (1) the schema of the (most specific) actor class cor-
responding to the factory, (2) maybe further constraints on the configuration parameters’
values, and (3) the abstract schema Actor Factory as given below. The latter represents
some method calls . These must be implemented by the physical piece of code which real-
izes this factory. For each node on which the corresponding actor class shall be instantiable,
an implementation of the factory has to be provided and installed.

3.9.2 Factories with Fully Specified Configuration

A Factory is said be of
”
fully specified configuration“, if it never rejects a cp-map as

inconsistent, which is valid according to its defining schema.

3.9.3 Additional State Space

(68)

ParameterUpdateAllowance ::= CO | RO | WI | RW | RWRT

CO < RO < WI < RW < RWRT

(69)
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

ParameterDescription

type : TYPE
updatemode : ParameterUpdateAllowance
value : type
//allowed : P type
default : type ∪ {⊥}
name : IDENT // // This field seems quite REDUNDANT.

default ∈ allowed ∨ default = ⊥

(70)

ParameterDescriptionList == IDENT 7 7→ ParameterDescription

(71)

ActorClassDescription

PI : ParameterDescriptionList
RT : FREE TYPE

// Please notice that the
”
places“ given by the identifiers in the domain of the value of PI of

any defining schema, will be treated like like
”
top-level“ schema fields when deriving another actor

class or when declaring a factory, i.e. they will be further constrained individually .
Also, when parameterizing the creation of a corresponding actor subsystems, the correspond-

ing values may individually be supplied or not.

(72)

Actor Factory

ActorClassDescription

-> create : LUID × pack PI → GR
-> delete : LUID × LUID → DeleteFeedBack
-> changeParams : LUID × pack PI → ParamFeedBack
-> dumpParams : LUID → pack PI
-> executeRtOperation : LUID × RT → DATA
// These are listed here just for survey, and will be introduced in the next

// sections, when discussing the corresponding functionalities they support.

. . .

3.9.4 Auxiliary and Convenience Definitions

The following auxiliary functions are useful for the definition of new classes and con-
straints :
(73)
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3.9 Actor Class Dynamic Declaration Interface

unpack : SCHEMA → ParameterDescriptionList
pack : ParameterDescriptionList → SCHEMA

unpack(s) = λ x • x .1 7→ [ParameterDescription | type = x .2; name = x .1] (| ⇓ s |)

pack(p) = ↑ (λ x • x .1 7→ x .2.value (|p|) )

//
”
⇓ “ means the pushing of a (meta-)value of type

”
SCHEMA“

// to a value from IDENT 7 7→ TYPE

//
”
↑ “ means the lifting of a mapping from IDENT 7 7→ α

// to a binding value of an (
”
automatically created“) corresponding

// schema type.

(74)

ActorClassDescription

. . .
V : IDENT → DATA

V (i) : PI (i) .type
V (i) == PI (i) .value

// For brevity we will further simply write

V fieldname

as equivalent to
V ( ”fieldname”)

(75)

extendparams : SCHEMA × SCHEMA → SCHEMA
extendops : SCHEMA × FREETYPE → SCHEMA
extend : SCHEMA × SCHEMA × FREETYPE → SCHEMA

extendparams(A,B) = [A \ PI | PI ⊂ A.PI ⊕ (unpack B)]
extendops(A,C ) = [A \ RT | RT = A.RT ⊕FDT C ]
// The operator ⊕FDT shall combine ranges and domains of two Free Data Types

extend(A,B ,C ) = extendparams(extendops(A,C ), B)

3.9.5 Example

There is a German idiom, often used in high school lesson hours filled with experimen-
tal chemistry, which says

”
You can see, that you see nothing“39. This verdict probably

matches the previous section.
Since the definitions therein are generic definitions, their meaning can hardly become

descriptive without instantiating them. Therefore we deviate from the standard way of
our presentation and give an example, which shows the plugging-in of the declarations
for two actor classes and one factory. As example we use a sequence of increasingly more
specific declarations of timer subsystems, as depicted in table 5.

First we define the configuration parameters and the run-time operations separately :

39

”
Sie sehen, daß Sie nichts sehen.“
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

Table 5 Example for the Definition of Configuration Parameters

type change allowance default range

AC Timer

minResolution Duration ≤ WI

curResolution Duration
maxDuration Duration ≤ RO

AC Timer 4711

minResolution Duration = CO

curResolution Duration
maxDuration Duration = CO

maxTransmissionDelay Duration = RO

Fact Timer x4711 2.2

minResolution Duration = CO 0.001

curResolution Duration = RW 0.01 0.001 ≤ v ≤ 0.1

maxDuration Duration = CO v < 3600.00

maxTransmissionDelay Duration = RO

∃n : Z • V curResolution = n ∗ sec(0.001)
V maxDuration / V curResolution≤ 231 − 1

PI Timer
minResolution : Duration
curResolution : Duration
maxDuration : Duration

RT Timer ::= start

| stop

| reset〈〈Duration〉〉

| read V timerval〈〈Duration〉〉

No we use these both data types to build a defining schema for the actor class:

AC Timer
ActorClassDescription

PI ⊂ unpack PI Timer
RT = RT Timer
PI (”minResolution”) .mode ≤ WI

PI (”maxDuration”) .mode ≤ RO

// Please notice that the auxiliary function unpack() abuses its schema-type argument and
reduces it to a simple mapping from names to types. This mapping is lifted to the object level.

Using further auxiliary functions we can make use of a kind of
”
copy-down inheri-

tance“ to define a
”
subclass“ of AC Timer. This subclass has (of course) a new name,

and additional configuration parameters and run-time operations :
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3.10 Application Layer : Creation and Deletion of Actors

PI Timer 4711 == [maxTranmissionDelay : Duration]
RT Timer 4711 ::= setMark(N)

| readMark(N) V timestamp(Time)

AC Timer 4711 == [ extend(AC Timer ,PI Timer 4711,RT Timer 4711)

| PI (”maxTransmissionDelay”) .mode = RO

PI (”minResolution”) .mode = CO

PI (”maxDuration”) .mode = RO

]

At last we declare a factory, i.e. a concrete
”
driver“, which probably will be supported

only on nodes of dedicated node classes40.
We simply build a new schema which combines (1) the schema of the (most spe-

cific) actor class for which the factory is an implementation, (2) the general pre-defined
Actor Factory schema, and (3) maybe further constraints on the configuration parameters.

FACT timer x4711 2.2

AC Timer 4711
Actor Factory

V minResolution = sec(0.001)
V maxDuration < sec(3600.00)
PI (”curResolution”) .mode = RW

PI (”curResolution”).default = sec(0.01)
sec(0.001) ≤ V curResolution≤ sec(0.1)
∃n : Z • V curResolution = n ∗ sec(0.001)
V maxDuration / V curResolution ≤ 231 − 1

Please notice that this schema imposes real dynamic constraints on the configura-
tion parameters’ values, since the value of maxDuration varies depending on the value of
curResolution.

3.10 Application Layer : Creation and Deletion of Actors

3.10.1 Principles of Operation (Non-Normative)

Different Notions of
”
Creation“ in the different

”
Semantic Spheres“. : In the

semantic sphere of a programming language L the
”
creation“ of a new

”
object“ nor-

mally happens when evaluating an appropriate sentence from L, like a TTCN-3 create()-
statement, a JAVA new-expression, a C++ declaration of an automatic variable, etc. This
evaluation returns a value of an abstract data type. This value then can be further pro-
cessed by other statements provided by L, — namely it can be stored into variables, and
it can be passed as an argument value to functions of the appropriate type.

In the semantic sphere of the programming language L this value is really
”
abstract“.

Nothing is known about this new object, beside its behavior as given explicitly by the

40The relation defining for which actor classes on which node classes which implementations exist, is
not part of TCI. Instead it should be modeled in the

”
next higher“ level of related specifications, see

section 5.2.3 below.
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

Figure 10 Collaboration Diagram for Creating a New Actor
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pre-defined semantics of L and the applicable pre-defined or user-defined functions and
procedures.

In the semantic sphere of
”
physical reality“ (e.g. some concrete hardware currently

performing the execution of a program) the situation is quite different:
(1) Each dynamically created

”
implementing object“ (i.e. the object living in the im-

plementation sphere, which corresponds to one abstract object from the language sphere)
must be represented by an address . This address may be physical or symbolical, e.g. a
code address, a driver entry point, a bus address, a handle for a method table (VTAB),
etc.

(2) The implementing object is part of the physical reality and has many aspects and
properties beyond the well-defined language semantics: A range of memory, which realizes
an implementing object, may — since being something

”
physical“ — be swapped-in or

swapped-out, aliased, write-protected, shared, damaged, etc.
(3) There can be very different kinds of implementations corresponding to the same

abstract concept in the language sphere. E.g. a newly created timer object can either be
mapped to a hardware timer (which is allocated from a limited set of such devices offered
by a certain hardware node), – or can be realized by a piece of software. Between these
variants an implementation can choose invisibly for the user.

In the semantic sphere of TCI, which is a kind of mediating tertium comparationis,
the creation of an abstract object in the language sphere is realized by the construction
and inventarization of a new actor subsystem of the appropriate actor class.

Operating transparently on remote actors : .
Performing operations on the abstract object in the sphere of the program must
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3.10 Application Layer : Creation and Deletion of Actors

be mapped onto some
”
physical“ operations on the implementing object. This must be

supported in a transparent way, even when the create() statement had been performed
on a remote node, and the reference to the abstract object has been passed from remote,
e.g. as a message argument.

Therefore all references to (dynamically created) abstract objects must be translated
to values of some communicable representation, in this section (locally!) referred to as

”
global identifiers“. Global identifiers, since being

”
absolute values“, can be embedded

into bus messages and transmitted to a receiving node via some network infrastructure.
The receiving node has to re-translate each received global identifier into the hardware

dependent implementing object. The last step can only be done on each node locally, using
the node’s internal knowledge. It yields the

”
physical address“ either of the

”
real“ object,

which directly represents the abstract object from the language sphere, or of a
”
proxy

object“, which supports the same interface, but maps most operations to messages sent
via the network to the former.

To ensure this transparency w.r.t. deployment, TUB-TCI took the decisions — as
mentioned above – to restrict the architecture to one single central instance each, for (1)
deployment knowledge, (2) deployment decision, and (3) name-space administration.

Please notice that (1) is totally contained in TCI, namely the CAS, while (2) is
external to TCI, namely located in the TM. Please notice further that (3) is under
control of CAS, not of TM.

The creation process of an actor : .
The creation of a new actor subsystems happens as follows (cf. fig 10) :

1. The source ATS has been compiled to an RBD, and each
”
new()“-like statement

contained therein has been compiled to a create() service request, sent to CAS.
The parameters of this request are (1) the indication of the actor class to create a
new instance of, (2) a hint on which (physical) node the new actor should be realized,
and (3) some actor class specific set constraints on the configuration parameters for
the new actor subsystem.

2. The CAS now asks the TM to decide for the node on which the actor really will be
created, based on the parameters (1) to (3) above and the NodeIdent of the originally
requesting node41.

3. If the TM can determine such a hosting node, its NodeIdent is returned, together
with a new cp-map. The latter is needed, because the TM’s knowledge of properties
and idiosyncratics of the selected implementation may require additional information
passed from TM to the factory. The new configuration parameter values calculated
by TM may be more restrictive than the original parameter set, or even differ totally,
and may be enriched by values for additional configuration parameters, only defined
for the selected implementation.
If no appropriate hosting node could be selected, an error indication is returned.

4. In TUB-TCI the global identifiers are realized by the values of type LUID.
The CAS allocates a fresh LUID for the new actor, and passes a DOcreate() request
to the hosting node. This request is parameterized with the LUID and the parameter
set generated by the TM.

5. The NodeServer on the hosting node passes this request to the appropriate factory.

41In any case, on the conceptual level this NodeIdent is information
”
leaking“ from the trns layer, cf.

section 2.9. On the implementation level this NodeIdent may be encoded in the corresponding message
explicitely, or implicitly inquired from the trns layer.
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

6. The factory’s creation method now can fulfill or reject the request.
7. This is signaled back to the CAS, which marks the new actor subsystem (as indexed

by its LUID) either as living or as error.
8. In case of success a positive result is sent back to the original client, containing the

LUID of the newly created actor subsystem, and the NodeIdent of its hosting node.
By these coordinates the newly created actor is reachable as soon as (or even before)
this reply message is received.

3.10.2 Creating Sub-Actors of an Actor

When a factory shall create an actor subsystem of some higher complexity, it may find
it necessary to create further actors implicitly . Normally these additional actors (called

”
sub-actors“ in this section) are needed to support the operation of the further (called

”
main actor“). E.g. a

”
port“ actor could require the allocation of a dedicated

”
timer“,

— a
”
messageFilter“ could require the creation of different

”
codeConverters“, — some

visualization device would need some
”
graphicWindow“, etc. The advantage of such a

sub-actor concept is, that these auxiliary subsystems can be configured and controlled by
the standard means forseen by their actor class in general.

The approach chosen in TUB-TCI for supporting the creation of sub-actors can be
called

”
local creation“, — an alternative called

”
external creation“ is sketched in section

5.1.3.
Here the factory (i.e. the create procedure in the factory’s code) decides on its

own, which actor classes must additionally be instantiated. The
”
physical“ creation of the

corresponding implementing subsystems is then performed locally and autarkicly. The
factory simply informs the CAS concerning the new, additionally created sub-actors. By
sending the service request message registercreatesub(j , seq actorClass) to CAS, the
latter is informed that the main actor with LUID = j contains a sequence of sub-actors
with the given actor classes.

Then the CAS allocates a new LUID for each position of that sequence, stores this id
together with the given actor class, and remembers this LUID to represent an actor which
is sub-actor of j . The LUIDs of the sub-actors are sent back to the factory by the message
subregistered(seqLUID).

The sub-actor relationship seems of practical relevance only if a delete() service will
ever be requested from a sub-actor. Then the CAS can re-direct this request to the main
actor.

Please notice that the permission of configuration parameters of type LUID will
make the creation of sub-actors controllable by the caller: Whenever the corresponding
value passed with the create() request addresses an existing actor, then this device is
taken as a sub-actor, — if the value is undefined, then a new sub-actor is created implic-
itly42.

3.10.3 Messages

(76)

42The change allowance of this configuration parameter must be WI and a default of
”
$autocreate“

could be provided!
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Figure 11 Life Cycle of a LUID
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ParameterValuePreference = Ident 7→ DATA
� : ParameterValuePreference × Param = Ident 7→ DATA

(77)

NodePreference ::= nodeset 〈〈P NodeIdent〉〉 | self | any

ParameterError ::= parameterError 〈〈 [ requiredButMissing : P Ident

readOnlyButGiven : P Ident

illegalValue : P Ident

// (means illegal value combination!)

]〉〉
ParameterFeedBack ::= parameterDone 〈〈 [ changed : P Ident

ignoredvalue : P Ident

ignoredident : P Ident

]〉〉
DeleteFeedBack ::= deleted 〈〈 P LUID 〉〉

(78)
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

SRQS from RBD to CAS [ a= ActorClass,ActorParams [a] ] ::=
create 〈〈 [ class : ActorType

nodeSelect : NodePreference

params : ActorParams [class] ]〉〉
V createsuccess 〈〈 [ id : LUID

hostingNode : NodeIdent ]〉〉
V createfailed 〈〈 [ ParameterError ]〉〉

| delete 〈〈LUID〉〉

V DeleteFeedBack

(79)

SRQS from Trns to CAS ::=
lookup〈〈LUID〉〉

V actorInfo 〈〈NodeIdent × ActorClass〉〉

V unknownLuid

(80)

SRQS from CAS to Node [ a= ActorClass,ActorParams [a] ] ::=
DOcreate 〈〈 [ class : ActorClass

id : LUID

params : ActorParams [class]

]〉〉
V creationparamerror 〈〈 [ ParameterError ]〉〉

V GF

V desmudge 〈〈 LUID × P LUID 〉〉

| DOdelete 〈〈 LUID × LUID 〉〉

V deleteFeedBack

(81)

SRQS from Factory to CAS ::=
registersubactors 〈〈 LUID × seq ActorClass 〉〉

V subactorsregistered 〈〈 seq LUID 〉〉

3.10.4 Additional State Space

(82)

ActorPhase ::= nonexisting | smudge | living | destroyed | error

(83)
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3.10 Application Layer : Creation and Deletion of Actors

NodeState
. . .
// These values are HARD WIRED into the implementation of TCI

// running on a given node :

findFactory : ActorClass 7 7→ Factory
. . .

(84)

Nodestate
. . .
actors : LUID 7 7→ ( a= ActorClass × Node × ActorParams [a] × ActorPhase)
. . .

// Please notice that the parameter settings stored in actors is just for diagnosis purpose. It
helps to recognize an actor subsystem by relating it to the application of create(), which brought
it into existence.

Here we store the
”
raw“ version as given by the user. We could instead/additionally store

the
”
enriched“ version, as computed by TM.

(85)

CAS
. . .
isContainedIn : LUID 7→ LUID
. . .

(86)

TM
. . .
//this function does need

”
strategic intelligence“, – nothing for TCI !

-> decideNode : NodeIdent × A = ActorClass × P A.params × NodePreference
7 7→ ( NodeIdent × A.params × Duration ) ∪ dom createError

(n, , ) = decideNode(o, , ,N )
⇒ n = n0 ∧ N = {n0}
∨ n = o ∧ N = self

∨ n ∈ N ∧ N ⊂ C.nodes
∨ n ∈ C.nodes ∧ N = ANY

. . .

(87)
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

Actor Factory

. . .
-> create : LUID × pack PI → (GR ∪ ParameterError)
-> delete : LUID × LUID → DeleteFeedBack

. . .

3.10.5 RBD
3

=⇒CAS

Here again we have an
”
architectural information leak“ (cf. section 2.9), since the informa-

tion that a new actor has been successfully created should (of course !?) be memorized in
the local NodeState. Then for this actor a future look-up from CAS will not be necessary.

a : ActorClass
p : ActorParams [a]
q : DATA
N : NodePreference
n : NodeIdent
CREATETIMEOUT : Duration

(88) // For sake of safety, fundamental calls are always evaluated as
”
expressions“

// e.g. called like hdl = TCI EVAL ( create(a,n,p) )

E [[K,K , ”(” create ( a,N , p ) ”)” ]]
; E [[K,K , req(CAS, wait(CREATETIMEOUT ), create(a,N , p) ) ]]

(89)

E [[K,∆K , answer(createsuccess ( j ,n ) )
| j 6∈ K .actors
∧ K ′.actors(j ) = (a,n, p, living)) ]]

; E [[K,K , ”(” j ”)” ]]

(90)

E [[K,K , answer(m)
| m = generalFailure()
∨ m = createfailed (parameterError() )]]

; // IMPLEMENTATION dependent error signaling

// The LANGUAGE BINDING is free to select :

// α = null / ε / m / (e ∈ GF )
; E [[K,K , α ]]
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3.10 Application Layer : Creation and Deletion of Actors

DELETETIMEOUT : Duration

(91)

E [[K,K , delete ( j ) | K .actors(j ) = ( , , , living) ]]
; E [[K,K , req(CAS, wait(DELETETIMEOUT ), delete ( j ) ) ]]

(92)

E [[K,∆K , answer(deleted(J ) )

| ∀ x ∈ J • K ′.actors(x ) = ( , , , destroyed ) ]]
; E [[K,K , ε]]

(93)

E [[K,K , answer(error() )
| K ′.actors(j ) = ( , , , error ) ]]

; // IMPL DEPENDING ERROR SIGNALING
; E [[K,K , ε]]

3.10.6 RBD
3

=⇒ CAS
2

=⇒NodeServer

Factory
5

=⇒ CAS

C ∈ CAS
containsParts == C.isContainedIn∼

// information leak (cf. 2.9) : o ::i is decomposed and origin node identified !

(94)

E [[K,∆C, service(o ::i , create (t ,N , p) )
| (n, q ,T ) == M -> decideNode( o , t , p,N )
∧ C′.actors ′ = C.actors ∪ {j 7→ (t ,n, p, smudge)} ]]

; E [[K,∆C, req(n, wait(T ), DOcreate(t , j , q) ) ]]
(95)

E [[K,∆C, answer(desmudge (j , J ) )
| containsParts∗ (|{j}|) ⊂ J
∧ ∀ x ∈ J • C′.actors(x ).4 = living ]]

; E [[K, C, reply(o ::i , createsuccess(j , actors(j ).2) ) ]]
(96)

E [[K,∆C, answer(deleted (J , txt) )
| containsParts∗ (|{j}|) ⊂ J
∧ ∀ x ∈ J • C′.actors(x ).4 = destroyed ]]

; E [[K, C, reply(o ::i , failure(”could not create”, txt ) ) ]]

(97)

E [[K, C, service(o ::i , registersubactors (j ,A) ) ]]
; E [[K, C, reply(o ::i , subactorsregistered(J ) )

| A : seq ActorClass
∧ J : seq LUID
∧ #A = #J
∧ ∀ x ∈ {1 . . . #A} • ( J .x 6∈ dom C.actors

∧ (J .x 7→ (A.x , o,⊥, smudge) ∈ C ′.actors

∧ (J .x 7→ j ) ∈ C ′.isContainedIn ) ]]
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

C ∈ ConfigurationControl
DELETETIMEOUT : Duration

(98)

E [[K, C, service ( o ::i , delete (j ′))
| j ′ 7→ ( ,n, , living) ∈ C.actors
∧ (ID [LUID ] ∪ C.isContainedIn )∗ (|{ j ′ } |) = {j}

]]

; E [[K, C, req (n, wait(DELETETIMEOUT ), DOdelete (j , j ′) ) ]]
(99)

E [[K, C, answer(M ) | M = deleted(J , ”OK”) ∧ j ′ ∈ J ]]
; E [[K,∆C, reply (M )

| ∀ x ∈ J • C′.actors(x ).4 = destroyed

∧ C′.isContainedIn = J −C C.isContainedIn ]]
(100)

E [[K, C, answer(deleted(J , txt) ) | j ′ 6∈ J ]]
; E [[K,∆C, reply (error(”could not delete”, txt , J )

| ∀ x ∈ J • C′.actors(x ).4 = destroyed

∧ C′.isContainedIn = J −C C.isContainedIn ]]
(101)

E [[K, C, answer(M ) | M ∈ ranGF ]]
; E [[K, C, reply(o ::i ,M ) ]]
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3.10 Application Layer : Creation and Deletion of Actors

3.10.7 CAS
2

=⇒ Node
7

=⇒Factory

// for sake of
”
authorization“ :

o = NodeIdent(CAS)

(102)

E [[K,K , service(o ::i , DOcreate (a, j , p, q) )
| j 6∈ dom K .actors

F == K .findActorFactory(a) ∧ F 6= ⊥
; E [[K,K ,AWAIT ( F -> createMethod (j , p, q) ) ]]

(103)

E [[K,∆K ,AWAIT M | M = ( desmudge(J ) )
| ∀ x ∈ J • K .actors(x ).4 = smudge

∧ K ′.actors(x ).4 = living ]]
; E [[K,∆K , reply(M ) ]]

(104)

E [[K,∆K ,AWAIT M | M = ( deleted(J , txt) )
| ∀ x ∈ J • K ′.actors(x ).4 = destroyed ]]

; E [[K,∆K , reply(M ) ]]

(105)

E [[K,K , service(o ::i , DOcreate (a, j , p) )
| j 6∈ dom K .actors

K .FindActorClass (a) = ⊥ ]]
; E [[K,∆K , reply Error(”noFactoryKnown”)

| (j 7→ (a,K , p, error)) ∈ K ′.actors ]]
(106)

E [[K,K , service(o ::i , DOcreate (a, j , p) )
| j ∈ dom K .actors ]]

; E [[K,∆K , reply(Error(”LUIDinuse”))
| (j 7→ (a,K , p, error)) ∈ K ′.actors ]]

(107)

E [[K,K , service(o ::i , DOdelete(j , k) )
| j , k ∈ dom K .actors
∧ (j = k ∨ C.isPartOf (k , j )

; E [[K,K ,AWAIT ( F -> deleteMethod (j , k) ) ]]
(108)

E [[K,∆K ,AWAIT M | M = ( deleted(J ) )
| ∀ x ∈ J • K ′.actors(x ).4 = destroyed ]]

; E [[K,∆K , reply(M ) ]]
(109)

E [[K,∆K ,AWAIT M | M ∈ ran GF ]]
; E [[K,∆K , reply(M ) ]]
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

3.11 Application Layer : Operation on Actors

3.11.1 Principles of Operation (Non-Normative)

Each actor subsystem offers three kinds of services: (1) changing and (2) inquiring of
its configuration parameters, and (3) execution of run-time operations. Service (2) must
expect a reply messages, the other two may be called unconfirmed.

As described above, there is one single definition of configuration parameters for each
actor class. This definitions maps identifiers to value types, default values and parameter
change allowance modes. These configuration parameters are addressed by services (1)
and (2).

The valid data (=
”
commands“) for the run-time operation service (3) is defined with

the actor class by a free data type, separately.
The procedure for identifying and addressing an actor is as follows:

• Any successful create(t ,n, p,) request is answered by a createsuccess(j ,N ) re-
ply, which returns j as the LUID for the freshly created subsystem, and N as the
NodeIdent of its hosting node.
Every successive setconfigparam(), getconfigparam() or rtOperation() request
operating on j must be sent via trns to the hosting node N .

• In case that the RBD has received the LUID identifying the actor from remote, e.g.
as a message parameter, the hosting node may not be known. Then its NodeIdent
will be fetched once from CAS. This is done by a lookUp() service request generated
automatically by the trns subsystem43.

• When the SRQ message finally reaches the hosting node of the actor, the implemen-
tation of TUB-TCI must decode the message and pass the call to the appropriate
implementing code44.

3.11.2 Messages

(110)

SRQS from RBD to Actors [ActorParams [ActorClass ] ] ::=
setconfigparams 〈〈[ actid : LUID

atomic : BOOL
data : Ident 7 7→ ActorParams
]〉〉

Vparamerror()

getconfigparams 〈〈[ actid : LUID ]〉〉
Vparamdump〈〈Ident 7 7→ ActorParams〉〉

rtOperation 〈〈[ actid : LUID ]〉〉
VRTvalue〈〈 DATA 〉〉

43Depending on the concrete application scenario, these mapping informations could be calculated
”
stat-

ically“ at compile time or link time. Then they could be downloaded to all nodes in advance, i.e. before
starting the test case performance, thus eliminating any delay for looking up hosting nodes during TRun.

The current version of TUB-TCI does not foresee any means for such an approach.
44A possible method for automating this mapping is discussed in section 5.2.3 as an extension.
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3.11 Application Layer : Operation on Actors

3.11.3 Additional State Space

(111)

NodeState
. . .
// Convenience functions:
classOf : LUID 7 7→ ActorClass
driverFor : LUID 7 7→ Factory

classOf (j ) = a ⇔ (j 7→ (a, , , )) ∈ actors
driverFor(j ) = findFactory(classOf (j ))
. . .

(112)

Factory

. . .
-> changeParamas : LUID × pack PI → ParamFeedBack
-> dumpParamas : LUID → pack PI
-> executeRtOperation : LUID × RT → DATA
. . .
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

3.11.4 RBD
8

=⇒Actor : Configuration Alteration, Status Enquiring and Run-
Time Actions of Actors

�x ∈ X == {setconfigparam, rtOperation}
�y ∈ Y == X ∪ {getconfigparam }
Mx == �x (j , . . .)
My == �y(j , . . .)
j : LUID

(113)

E [[K,K ,MX ”;” | (j 7→ (N , , , living)) ∈ K .actors ]]
; E [[K,K , req(N , $noresp,M )]]

(114)

E [[K,K , ”(” MY ”)” | (j 7→ (N , , , living)) ∈ K .actors ]]
; E [[K,K , req(N , wait,MY ) ]]

(115)

E [[K,K , answer(m)]]
; E [[K,K , ”(” m ”)” ]]

E [[K,K ,
{

”(”
}

MX

{

”)”
”;”

}

, | (j 7→ (N , , , x )) ∈ K .actors

∧ x 6= living ]]
(116)

// IMPLEMENTATION dependent error recovery

// The LANGUAGE BINDING is free to select :

// α = null / ε / m / (e ∈ ran GF )
; E [[K,∆K , α | (j 7→ (a, , , error) ) ∈ K ′.actors ]]
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3.11 Application Layer : Operation on Actors

3.11.5 trans
4

=⇒CAS : Looking up Actors

� ∈ {setconfigparam, getconfigparam, rtOperation, . . . , delete, enquire, connect, . . .}
M == � ( j , . . .)
J : LUID

(117)

E [[K,K ,M | ( j 7→ ( , , ,X ) ) ∈ K .actors ∧ X ∈ {destroyed, error } ]]
; ERROR

(118)

E [[K,K ,M | j 6∈ dom K .actors]]
; E [[K,K , req(CAS, wait, lookup (j ) ) ]]

(119)

E [[K,K , answer(nodeinfo (N , a) ) ]]
; E [[K,∆K ,M | (j 7→ (a, ,N , living) ) ∈ K ′.actors ]]

(120)

E [[K,K , answer(m) | m = actorinfo(unknown) ]]
; ERROR

(121)

ERROR == // IMPLEMENTATION dependent error recovery

// The LANGUAGE BINDING is free to select :

// α = null / ε / m / (e ∈ ran GF )
; E [[K,∆K , α | (j 7→ (a, , , error) ) ∈ K ′.actors ]]

3.11.6 trans
4

=⇒ CAS : Looking up Actors

(122)

E [[K,C , service ( o ::i , lookup(j ) ) | (j 7→ (N , a, , living) ) ∈ C .actors ]]
; E [[K,C , reply(o ::i , nodeinfo(N , a) ]]

(123)

E [[K,C , service ( o ::i , lookup(j ) ) | j 6∈ dom C .actors
∨ C .actors (j ) .4 6= living ]]

; E [[K,C , reply(o ::i , unknownLuid) ]]

3.11.7 RBD
8

=⇒ Actor : Configuration Alteration, Status Enquiring and Run-
Time Actions of Actors
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

( j 7→ (K , a, p, living) ) ∈ K .actors
D = K .driverFor(j ) ∧ D 6= ⊥

(124)

E [[K,K , service ( o, i , setconfigparam (j ,L,m) )

| r == D -> changeParams ( j ,L,m) ]]

; E [[K,K , reply( o, i , r )]]

(125)

E [[K,K , service ( o, i , getconfigparam (j ) )

| r == D -> dumpParams ( j ) ]]

; E [[K,K , reply( o, i , r )]]

(126)

E [[K,K , service ( o, i , rtOperation (j , q , r) )

| r == D -> executeRtOperation ( j , q , r) ]]

; E [[K,K , reply( o, i , r )]]

3.12 Application Layer : QAS and Push-Channels for Value Events()

delivered from Producersto RBQs

3.12.1 Principles of Operation (Non-Normative)

Any hardware devices which is capable of generating or detecting
”
externally deter-

mined events“ (asynchronously and spontaneuosly) is represented by a producer subsystem.
Whenever the hardware device detects the corresponding situation (e.g. a timer at expira-
tion, an incoming datum at a port, a pushed button), the representing producer subsystem
sends a value event() message to the QAS subsystem.

The drains, to which the event signal shall finally be delivered, are subsystems of
category RBQ, i.e. they offer the rtOperation(putQ()) run-time operation service.

To minimize the load on the RBQ implementations and the system traffic, each RBQ
must explicitely subscribe for a producer to receive the value events() generated by it.
Since therefore the stream of signals is under program-control, and may change dynami-
cally during run-time, the value events() cannot be delivered from the producer to the
RBQs statically. The QAS subsystem distributes the value event() messages to all cur-
rently subscribed RBQs, and to those remote nodes which host further drains.

The subscription process is complicated because, (1) it must consider that the trans-
port layer communication lines need not to be bidirectional, cf. figure 12: The request to
subscribe() a certain source has firstly to be sent to the node which hosts the source.
Then starting from there, it has to be passed along the chain of all nodes on the physical
communication line, as given by the routing information. This induces another compli-
cation, as (2) this is a typical example of

”
architectural information leak“ (cf. above 2.9

on page 24): all information from the
”
physical“ layer is normally strictly hidden from all

application logic.
The protocol realizes the subscription from producer to RBQ by a chain of low-level

subscriptions from node to node. Therefore all nodes in the physical chain from the node
hosting the source to the node hosting the target, are

”
aware“ of the signal flow. This has

the benefit that each new subscription needs only to append the missing last segments to
a maybe already existing push-channel in the neighborhood.

The unsubscribe() mechanism also has an
”
information leak“, as during the sub-
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The QAS and Push-Channels

Figure 12 Complex Situation for subscribe() and unsubscribe()

subscribe command unsubscribe command value event push channeltransport channels

scription process the origin node of the (technical) DOsubscribe() message is memorized.
This node is identical with the node sending the run-time value events(), and its identity
is required later to parameterize the DOunsubscribe() message.

3.12.2 Messages

(127)

SRQS RBD to QAS ::= subscribe 〈〈[ target : LUID ; source : LUID ]〉〉

| unsubscribe 〈〈[ target : LUID ; source : LUID ]〉〉

(128)

SRQS Producers to QAS ::= value event〈〈[ id : LUID

data : DATA]〉〉

// Please notice that the interface QAS
6

=⇒ RBQ is already existing, implicitly realized by the

service rtOperation(putQ()).
// Note for TTCN-3 users :
The

”
timeout“ event of a

”
timer subsystem“ is just an ordinary sub-type of the normal run-time

value event().
The

”
timeout“ result of a remote procedure call is generated by TUB-TCI trns layer.

3.12.3 Additional State Space

(129)
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

NodeState
. . .
subscribedBy : LUID 7 7→ P (NodeIdent ∪ LUID)
. . .

∀ x ∈ (LUID ∩
⋃

ran subsriptedBy)

• (x 7→ (ownIdent , , , living)) ∈ actors ∧ classOf (x ) w RBQ

(130)

NodeState Init
. . .
subscribedBy = {}
. . .

(131)

Factory supporting Producer

Actor Factory

-> streamControl ({on, off})
-> watchHdw
-> detectedExtEvent ( DATA )

(132)

Factory supporting RBQ

Actor Factory

dom putQ( DATA ) ⊂ dom RT

//dom putValueEvent( DATA ) ⊂ dom RT
//RT ::= putValueEvent( DATA )
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The QAS and Push-Channels

3.12.4 producer
11

=⇒ QAS
6

=⇒RBQ : Signaling Run-Time Events

j ,A : LUID
M : DATA [K .classOf (j )]
D == K .driverFor(j )
N : NodeIdent

(133)

E [[K,K ,D -> streamControl(on) ]]
; E [[K,K , ε ‖+ D -> watchHdw ]]

(134)

E [[K,K , D -> watchHdw ‖ D -> streamControl(off) ]]
; E [[K,K , ε ]]

(135)

E [[K,K ,D -> watchHdw ]]
; E [[K,K ,D -> DetectExtEvent(M ) ]]
; E [[K,K ,D -> watchHdw ‖+ value event (j ,M ) ]]

(136) // A locally generated event is distributed :

E [[K,K , value event(j ,M )
| ( j 7→ ( ,N , , living) ) ∈ K .actors
∧ S == K .subscribedBy(j ) ∧ S 6= {} ]]

; E [[K,K ,DELIVERVALUEEVENT (S , j ,M ) ]]

(137) // Distribution to other Nodes :

E [[K,K , DELIVERVALUEEVENT ( {N } ∪ S , j ,M ) ]]
; E [[K,K , DELIVERVALUEEVENT (S , j ,M ) ‖+ req(N , $noresp, value event(j ,M ) ) ]]

// $noresp makes that TRNS layer will expand to ε,
// and the new thread will disappear again.

(138) // Distribution to local subscribers :

E [[K,K , DELIVERVALUEEVENT ( {A} ∪ S , j ,M ) ]]
; E [[K,K , DELIVERVALUEEVENT (S , j ,M )

‖+ D -> execRtOperation (j , pushq(m)) ]]
(139)

E [[K,K , DELIVERVALUEEVENT ( {} , , )]]
; E [[K,K , ε ]]

(140)

E [[K,K , service (o ::i , value event (j ,M ) ) ]]
; E [[K,K ,DELIVERVALUEEVENT (K .subscribedBy(j ), j ,M )]]
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

3.12.5 RBD
10

=⇒ QAS : Subscribe and unsubscribe Signal Stream

nT ,nS : LUID
kK , kX , kS , kT : NodeIdent
(nS 7→ (aS , kS , , living) ) ∈ K .actors
(nT 7→ (aT , kT , , living) ) ∈ K .actors
aS v RBD Producer
aT v RBQ
// Every subsystem serving as source/drain must be

// of category producer/RBQ.

X : NodeIdent ∪ LUID

(141) // If source and target both local : Try to start the device.
E [[K,K , subscribe(nT ,nS )

| kT = K .ownIdent ∧ kS = K .ownIdent ]]
; E [[K,K ,CHECKSTART(nT ,nS )]]

(142) // If source is already subscripted : Just memorize new target.
E [[K,∆K , subscribe(nT ,nS )

| kT = K .ownIdent ∧ KS 6= K .ownIdent
∧ K .subscribedBy(nS ) 6= {}
∧ K ′.subscribedBy(nS ) = K .subscribedBy(nS ) ∪ {nT} ]]

; E [[K,K , ε]]

(143) // If target is remote, or source remote and unsubscribed :
// Start whole subscribing chain below!
E [[K,K , subscribe(nT ,nS )

| kT 6= K .ownIdent
∨ ( kS 6= K .ownIdent ∧ K .subscribedBy (nS ) = {} ) ]]

; E [[K,K , req(kS , $noresp, DOsubscribe(nT ,nS ,⊥) ) ]]

(144) // Device has not subscribed yet : start it via Factory/Driver :
E [[K,∆K ,CHECKSTART(X ,nS )

| K .subscribedBy(nS ) = {}
∧ K ′.subscribedBy(nS ) = {X }
∧ D = K .findDriver(K .classof (nS )) ]]

; E
[[

K,K ,∆D -> streamControl(on)
]]

(145) // Device has been subscribed already : just memorize new drain.
E [[K,∆K ,CHECKSTART(X ,nS )

| K .subscribedBy(nS ) 6= {}
∧ K ′.subscribedBy(nS ) = K .subscribedBy(nS ) ∪ {X } ]]

; E [[K,K , ε]]
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The QAS and Push-Channels

// Whole chain, going from target to drain node :

(146) // If drain is not local on current node, then add next node (w.r.t. drain-wards direction)

// to subscribers and pass message to this :

E [[K,K , service(o ::i , DOsubscribe(nT ,nS , kL) )
| kT 6= K .ownIdent

∧ kX =

{

k if K .routing .gate(kT ) = hop(k)

kT if K .routing .gate(kT ) = driver(. . .)

]]
; E [[K,K ,DOSUBSCRIBE(nT ,nS , kL, kX )

‖+ req (kX , $noresp, DOsubscribe (nT ,nS , K .ownIdent ) ) ]]

(147) // If drain node finally reached : Just memorize subscribers

E [[K,K , service(o ::i , DOsubscribe(nT ,nS , kL) )
| kT = K .ownIdent ]]

; E [[K,K ,DOSUBSCRIBE(nT ,nS , kL,nT ) ]]

(148) // If node is not hosting the source :

// just memorize drain node and source node for later unsubscribe().

E [[K,∆K ,DOSUBSCRIBE(nT ,nS , kL,X )
| kS 6= K .ownIdent
∧ K ′.subscribedBy(nS ) = K .subscribedBy(nS ) ∪ {X }
∧ K ′.subsrcnodes(nS ) = kL ]]

; E [[K,K , ε ]]

(149) // If node is hosting the source : just start the device

E [[K,K ,DOSUBSCRIBE(nT ,nS , ,X )
| kS = K .ownIdent ]]

; E [[K,K ,CHECKSTART (X ,nS ) ]]

(150) // If both drain and source are local : Just turn off sending actor.

E [[K,∆K , unsubscribe(nT ,nS ) | kS = K .ownIdent ∧ kT = K .ownIdent ]]
; E [[K,K ,CHECKOFF (nT ,nS ) ]]

(151) // If drain or source is remote : Start whole chain from drain to source

E [[K,K , unsubscribe(nT ,nS ) | kS 6= K .ownIdent ∨ kT 6= K .ownIdent ]]
; E [[K,K , req(kT , $noresp, DOunsubscribe(nT ,nS ) ) ]]

(152) // Delete last subscriber:

E [[K,∆K ,CHECKOFF(X ,nS )
| K ′.subscribedBy nS = K .subscribedBy(nS ) \ {X }
∧ K ′.subscribedBy nS = {}
∧ D = K .driverFor(nS ) ]]

; E [[K,K ,D -> streamControl (off) ]]

(153) // Delete a subscriber, not the last!

E [[K,∆K ,CHECKOFF(X ,nS )
| K ′.subscribedBy nS = K .subscribedBy(nS ) \ {X }
∧ K ′.subscribedBy nS 6= {} ]]

; E [[K,K , ε ]]
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

Table 6 Interactions with Actor Subsystems, via trns or via HsLink

Kind of Interaction source target normal speed high sp.

request(. . .)

Parameter Change (j , p) RBD actor (n, paramchange(j , p)) —

Parameter Inquiry (j ) RBD actor (n, paraminq(j )) —

Execute RT Operation (j , r) RBD actor (n, rtOperation(j , r)) YES
drn type

Value Event detected (j , d) producer RBQ (⊥, rtOperation(pushQ(d))) YES
(value event()) src type

j = LUID of actor
p = parameter assignment description
n = hosting node of actor j
d = data value of some incoming external real-time event
r = description of a run-time operation, as defined by actor class

(154) // Unsubscribe of X reaches node hosting the source:

E [[K,K , service(o ::i , DOunsubscribe(X ,nS ) )
| K .nodeOf (nS ) = K .ownIdent ]]

; E [[K,K ,CHECKOFF (X ,nS ) ]]

(155) // Delete last consumer for remote source: Unsubscribe own node from next node

// (
”
next“ w.r.t. sourceward direction.)

E [[K,∆K , service(o ::i , DOunsubscribe(X ,nS ) )
| kS 6= K .ownIdent
∧ K ′.subscribedBy(nS ) = K .subscribedBy(nS ) \ {X }
∧ K ′.subscribedBy(nS ) = {} ]]

; E [[K,K , req(K .subscrsourcenode(nS ), $noresp,
DOunsubscribe(K .ownIdent ,nS ) ) ]]

(156)

E [[K,∆K , service(o ::i , DOunsubscribe(X ,nS ) )
| kS 6= K .ownIdent
∧ K ′.subscribedBy(nS ) = K .subscribedBy(nS ) \ {X }
∧ K ′.subscribedBy(nS ) 6= {} ]]

; E [[K,K , ε ]]

3.13 Application and Transport Layer : HsLink

3.13.1 Principles of Operation (Non-Normative)

The modularity, adaptability and reliability of the basic (text-based) communication
model — as developed so far — have been paid for by some execution overhead w.r.t.
encoding, routing and decoding.
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3.13 Application and Transport Layer : HsLink

Because this can make its application infeasible in certain practical situations, TUB-
TCI provides a second, parallel way of communication dedicated to high speed trans-
mission. Since these operate with

”
binary encoded“ or

”
native“ data, it can be used

for minimal delay signal transport between subsystems of compatible, maybe proprietary
encoding45.

In some concerns the HsLinks are treated/behave in a dual way compared to the

”
normal speed“ trns-based control and signal flow. The concept of HsLinks is characterized

as follows:

• For the transfer of value events and run-time commands which occur frequently with
high bandwidth and known sources and drains, a

”
High Speed Link“ (= HsLink) can

be allocated.
• A HsLink is a steady connection between one or more sources and one or more targets.
• Each HsLink must be allocated, reserved and prepared during TPrep. It stays alive

during the whole of a TRun, but the actual transmission can be switched on and off.
• There are two kinds of HsLinks, cf. table 6, namely:

– Either the single source is a subsystem of category Producer, the drains are one
or more RBQs, and the transmitted messages are value events(). This is a
one-to-many signal flow, and called HsLink of src-type.
By this type of HsLink value events() (like the arrival of a PDU at a certain
port) can be signaled to local and remote consumers with minimal delay.
A HsLink of src-type is uniquely identified by the only producer subsystem
serving as its source.

– Or the single drain is some actor, the one or more sources are RBDs, and
the transmitted messages trigger some run-time operations (rtOperation()
messages). This is a many-to-one signal flow, and called HsLink of drn-type.
By this type of HsLink a messages like startTimer() can be executed on any
actor (maybe transparently on a remote node) with minimal delay.
A HsLink of drn-type is uniquely identified by the only actor subsystem serving
as its drain.

• In contrast to message transmission via trns, the HsLink-messages will (1) not be
encoded textually, but are in some arbitrary native

”
binary“ encoding, (2) this en-

coding will always be known statically, and (3) it is always known in advance, to
which drains the messages must be delivered.

• The responsibility for the functional correctness of any HsLink is out of the scope of
TUB-TCI: Since at the moment there is no representation of encoding rules on the
object language level46, the compatibility of the binary encodings used by sources and
drains must be validated by an external system, which has the necessary knowledge
(e.g. realized as a part of TM).
In spite of the lack of a formal declaration mechanism, nevertheless a clear specifica-
tion of applied encoding rules should be given informally (on documentation level)
with any factory which supports the binary HsLink interfaces.

• To minimize the load on the communication infrastructure used for HsLinks, those
of src-type may be dynamically subscribed and unsubscribed by their consumers
during TRun.

45For the reader familiar with the corresponding ETSI standards: The HsLink mechanism can be consid-
ered as a generic, dynamic way of integrating a TRI-system into TUB-TCI (cf. [tri02], [tci03]).

46Section 5.2.2 will discuss a possible corresponding extension of the specification.
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

In contrast to the trns-based
”
normal speed“ push-channels, this subscription is real-

ized as a simple
”
switch-on/switch-off“ protocol, which does not affect the allocation

and reservation of the HsLinks, but only enables/disables the data transmission.
For this protocol to have any physical effect, the involved HS-BusAdapters must
provide a control channel , i.e. a transmission channel in the opposite direction of
the signal transmission.

• Every actor/RBQ which shall be used as a drain in a HsLink must implement a

”
binary version“ of the rtOperation()/rtOperation(putQ())-service.

On concept level this corresponds to the inclusion of the schemas
Factory supporting HsRTOP/ Factory supporting HsRBQ.
Every producer which shall be used as a source in a HsLink must call the

”
binary

version“ of the value event()-service in course of its client behavior. Addition-
ally it may include the schema Factory supporting HsProducer and implement the
switchHsValueProduction() service, which allows on/off-control of signal produc-
tion for sake of load minimization.

A central issue concerning with HsLinks is, that they are introduced for sake of ef-
ficiency, and therefore have to be implemented closely following the specific needs and
properties of the involved hardware. This is supported by TUB-TCI (e.g. by treating the
concrete data flow opaquely), while nevertheless all configuration and control activity is
lifted up to the necessary level of abstraction.

Since the communication resources of each hardware node shall be used optimally, the
basic operation of creating an HsLink can best be done by the receiving node, — mostly
because the kind of the underlying communications channel can induce very different
modes of access to the HsLink it realizes, cf. figure 13:

• Consider e.g. a IP driven bus, when a HsLink is realized by a dedicated
”
Socket“.

All other nodes on this bus – beside the one for which the HsLink originally has been
created – can also write to this HsLink immediately.

• The opposite is true for e.g. some serial-peer-to-peer-timeslot-ring. Here slots can be
reused depending on the physical topology, and only that subset of nodes physically
between the source node and the target node can use a given slot to read or write
values.

So the node site HsLink creation procedure may return a set of NodeIdents, indicating
which nodes are capable (for

”
physical“ reasons) to use that HsLink from now on for

writing. This set may contain significantly more nodes than only the one which originally
requested for the HsLink.

Each HsLink address is represented as tupel (a, b, c) for a sending node. The sending
node always knows through which of its own bus adapters (= a) together with which bus
address (= b) to reach the target node47.

But only the target node can create the
”
channel number“ (= c) for the new HsLink,

which allows the receiving driver to identify the HsLink and its drain optimally (cf. fig-
ure 13). This channel number is identical for all source nodes writing on this HsLink via
the same bus, and it is globally unique for a certain combination of target not, bus and
HsLink.

47
Please notice, that b can differ for the same target node on the same bus with different source nodes.
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3.13 Application and Transport Layer : HsLink

3.13.2 Additional State Space

(157)

HsChannelNum == N

(158)

HsBusAdr

(159)

CodingObject

(160)

HsKind == { src, drn }
HsState == { on, off }

(161)

NodeState

. . .
HsInRouting : NodeIdent 7 7→ [D : HsAdapter ; r : HsBusAdr ]

// The bus address r is needed for reverse control messages!

HsOutRouting : NodeIdent 7 7→ [D : HsAdapter ; b : HsBusadr ]

HsInLinks : (LUID × HsKind × CodingObject)
7 7→ [D : HsAdapter ; r : HsBusAdr ;
c : HsChannelNum; x : HsState
writers : P NodeIdent ]

// The bus address r is needed for reverse control messages!

HsOutLinks : (LUID × HsKind × CodingObject)
7 7→ P [D : HsAdapter ; b : HsBusAdr ;
c : HsChannelNum; x : HsState ]

HsLocalSubs : LUID 7 7→ P LUID
. . .

dom HsInLinks ∩ domHsOutLinks = {}
⋃

ran HsLocalSubs ⊂ actors

// Inrouting and outrouting could be from P type, – different design !!!

(162)
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

Factory supporting HsRTOP

Actor Factory

-> HsRtOperation(LUID × RT )

(163)

Factory supporting HsProducer

extendParams(Factory supporting Producer , [coding : CodingObject ])
PI (”coding”).mode = CO

-> switchHsValueProduction(LUID × {on, off})

(164)

Factory supporting HsRBQ

extendParams(Factory supporting RBQ , [coding : CodingObject ])
PI (”coding”).mode = CO

-> HsPutQ(LUID × INDAT )

(165)

HsAdapter In

bus : Bus
busAdr : HsBusAdr

-> watchBus ()
-> incomingMessage (HsChannelNum × DATA )
-> controlInSlot (HsChannelNum × { on, off } )

-> allocateInSlot NodeIdent → HsChannelNum × PNodeIdent × HsState

(166)
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3.13 Application and Transport Layer : HsLink

HsAdapter Out

bus : Bus
revertBusAdr : HsBusAdr

-> putMessage (HsBusadr × HsChannelNum × DATA )

-> watchBusR
-> detectedChannelSwitch(HsBusAdr × HsChannelNum × {on, off} )

3.13.3 Messages

(167)

SRQS TM to Node ::= HScreateinlink 〈〈[ actor : LUID

type : HsKind

srcnode : NodeIdent ]〉〉
V HScreated 〈〈[ srcs : P NodeIdent

cid : HsChannelNum ]〉〉

HSregisteroutlink 〈〈[ actor : LUID

type : HsKind

hosting : NodeIdent

channel : HsChannelNum ]〉〉

(168)

SRQS Producers to QAS ::= HSvalue event〈〈[ id : LUID

data : DATA]〉〉
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

3.13.4 TM
6

=⇒ Node : Create High Speed In-Links and Out-Links

j : LUID
kK , kX , kS , kT : NodeIdent
x : HsKind
c : HsChannelNum
s : HsState
N : PNodeIdent

(169) // Create an incoming slot, writeable by KS

// If kind = src, then KS will be the only writer

// and must later be addressed in channel-on/off commands

E [[K,∆K , service (o ::i , HScreateinlink(j , x ,KS ) )
| (D , r) = K .HsInRouting (KS )
∧ (c,N , s) = D -> HsAllocateInSlot(KS )
∧ K ′.HsInLinks = K .HsInLinks ∪ {j ::x 7→ (D , r , c, s,N )} ]]

; E [[K,K , reply (o ::i , HScreated(N , c) ) ]]
// Please notice that the activation state is not told to CAS

(170) // Memorize that actor j is either writable (drn) or required (src) by HS channel c on node KN

E [[K,∆K , service (o ::i , HSregisteroutlink (j , x ,KN , c) )
| (D , b) = K .HsOutRouting (KN )
∧ K ′.HsOutLinks = K .HsOutLinks ∪ {j ::x 7→ (D , b, c, off)} ]]

; E [[K,K , reply (o ::i , OK) ]]

3.13.5 Producer
11

=⇒QAS : Generate Value Events For High Speed Channels

j : LUID
M : Message
// M ′ = native binary encoding of M

// Every Factory supporting HS producer hat to enhance the transition rule (135) on page 81

// by the following rule (171) :

(171) // Locally generated value event :

E [[K,K , value event(j ,M ) ]]
; E [[K,K ,HSINPUT ((j , src), M ′) ]]
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3.13 Application and Transport Layer : HsLink

3.13.6 QAS
−/9
=⇒QAS ∪ RBQ : Delivering HS Value Events

j : LUID
N : NodeIdent
A : LUIDRBQ// designates an

”
Actor“ of kind

”
RBQ“.

H : LUIDHSLINK// designates an OUTGOING
”
high speed link“ object.

// ”drn” type : many-to-one mode, i.e. alternatives of delivery :

(172) // Pass ”drn” type messages to hosting node of actor:

E [[K,K ,HSINPUT((j , drn),M )
| ( j 7→ ( , ,K .ownIdent , ) ) 6∈ K .actors
∧ (j , drn) 7→ (DN , b, c) ∈ K .HsOutlinks ]]

; E
[[

K,K ,DN -> putMessage (b, c,M )
]]

(173) // Execute ”drn” type messages if actor is local:

E [[K,K ,HSINPUT((j , drn),M )
| ( j 7→ ( ,K .ownident , , living) ) ∈ K .actors
∧ F = K .findDriver(K .classOf (j )) ]]

; E
[[

K,K ,F -> HsRtOperation(j ,M )
]]

// ”src” type : one-to-many mode, i.e. conjunction of delivery :

(174) // Send ”src” type message to all consumers:

E [[K,K ,HSINPUT((j , src),M )
| S = K .HsOutLinks(|{(j , src)}|) ∪ K .HsLocalSubs(j ) ]]

; E [[K,K ,DELIVERVALUEEVENT(S ,M ) ]]

(175) // Feed local consumers with data:

E [[K,K ,DELIVERVALUEEVENT ({nT } ∪ S ,M )
| (nT 7→ ( ,K .ownIdent , ) ) ∈ K .actors
∧ F = K .findDriver(K .classOf (nT )) ]]

; E
[[

K,K ,F -> HsPutQ(nT ,M ) ‖+ DELIVERVALUEEVENT (S ,M )
]]

(176) // Pass on to subscribed nodes:

E [[K,K ,DELIVERVALUEEVENT ({X } ∪ S ,M )
| X = (DN , b, c, on) ]]

; E [[K,K ,DN -> putMessage (b, c,M ) ‖ DELIVERVALUEEVENT (S ,M ) ]]

(177) // Ignore switched off channels for lowering channel load:

E [[K,K ,DELIVERVALUEEVENT ({X } ∪ S ,M )
| X = (DN , b, c, off) ]]

; E [[K,K ,DELIVERVALUEEVENT (S ,M ) ]]

(178) // Done:

E [[K,K ,DELIVERVALUEEVENT ({},M ) ]]
; E [[K,K , ε ]]
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

3.13.7 RBD
10

=⇒ QAS : Subscribe and Unsubscribe HsLink

nS : LUID
T : {on, off} ∧ ¬ (on) = off ∧ ¬ (off) = on

someoneListens : K × LUID → BOOL
someoneListens (k ,n) = ( k .hsLocalSubs = {} )

∧ ∀ (D , b, c, x ) ∈ k .outLinks(|{(n, src)}|) • x = off ]]

(179) // Three possibilities to reach a new on/off state for an HsInLink :

E [[K,K ,SWITCH (nS ,T ) | (nS , src) 7→ (D , b, c,T ) ∈ K .HsInLinks ]]
; E [[K,K , ε ]]

(180)

E [[K,K ,SWITCH (nS ,T ) | (nS 7→ ( ,K .ownIdent , ) ) ∈ K .actors
; E

[[

K,K ,K .factoryFor(nS ) -> switchHsValueProduction (T )
]]

(181)

E [[K,K ,SWITCH (nS ,T ) | (nS , src) 7→ (D , b, c, (¬ T ) ) ∈ K .HsInLinks ]]
; E

[[

K,K ,D -> HsControlInSlot (r ,D .busAdr , c,T )
]]

(182) // (always locally) executed (un-)subscription initializes rippling :

E [[K,K , HSsubscribe(nT ,nS ) | K ′.HsLocalSubs(nS ) = K .HsLocalSubs(nS ) ∪ {nT} ]]
; E [[K,K ,SWITCH(nS , on) ]]

(183)

E [[K,K , HSunsubscribe(nT ,nS ) | K ′.HsLocalSubs(nS ) = K .HsLocalSubs(nS ) \ {nT} ]]
; E [[K,K ,TESTOFF(nS ) ]]

(184)

E [[K,K ,TESTOFF(nS ) | ¬ someoneListens(K ,nS ) ]]
; E [[K,K ,SWITCH(nS , off) ]]

(185)

E [[K,K ,TESTOFF(nS ) | someoneListens(K ,nS ) ]]
; E [[K,K , ε ]]
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3.13 Application and Transport Layer : HsLink

3.13.8 HsBusAdpt
electric
=⇒ HsBusAdpt HS Bus Communication

j : LUID
K ,L : NodeState
D ∈ K .HsAdapters Out ∧ E ∈ L.HsAdapters In
c ∈ {on, off}
(186)

E [[K,K , D -> putMessage(b, c,M ) ‖ L, E -> WatchBus
| D .bus = E .bus ∧ E .busAdr = b ]]

; E [[K,K , ε ‖ L, E -> WatchBus ‖+ E -> incomingMessage(c,M ) ]]
// The identity of the busses is located in the ideal space and realized electrically

(187)

E [[K,L, E -> incomingMessage(c,M ) ]]
; E [[K,L, HSINPUT(K .HsInlinks∼ (E , c, on),M ) ]]

(188) // Reverse communication from input to output adapter :

E [[K,L,E -> HsControlInSlot(r , b, c, x ), ‖ K ,D -> WatchBusR
| D .bus = E .bus ∧ r = D .revertAdr ]]

; E [[K,L, ε ‖ K ,D -> WatchBusR ‖+ ConsumerSwitched(D , b, c, x ) ]]

(189)

E [[K,∆L,ConsumerSwitched (D , b, c, on)
| (j , src) 7→ (D , b, c, off) ∈ L.HsOutSlots
∧ L′.HsOutSlots = L.HsOutSlots ⊕ {(j , src) 7→ (E , b, c, on)} ]]

; E [[K,L,SWITCH (nS , on) ]]

(190)

E [[K,∆L,ConsumerSwitched (D , b, c, off)
| (j , src) 7→ (D , b, c, on) ∈ L.HsOutSlots
∧ L′.HsOutSlots = L.HsOutSlots ⊕ {(j , src) 7→ (E , b, c, off)} ]]

; E [[K,L,TESTOFF (nS ) ]]
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

Figure 13 Creation of HsLinks / Variants of HsLinks determined by the underlying
Technology
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3.14 Population Layer : Predefined and Required Actor Classes

3.14 Population Layer : Predefined and Required Actor Classes

3.14.1 CAS
6; 7
=⇒ Factory and RBD

8
=⇒ Actors :

Library of Predefined General Purpose Actor Class Declarations.

(191)

AC Timer

ActorClass[configurationParameters ]

configurationParameters ::= timer cparams 〈〈[minResolution : Duration

curResolution : Duration

maxTransmissionDelay : Duration

maxValue : Duration

]〉〉
parameterInfo(minResolution) ⊂ [PI | mode = CO ]
parameterInfo(maxDuration) ⊂ [PI | mode = RO ]
PI ( ”curResolution”) .mode ≤ RW

run − timeOperations ::= start

| stop

| reset〈〈Duration〉〉

| read V timerval〈〈Duration〉〉

(192)

AC Executable

ActorClass[configurationParameters ]

configurationParameters ::= executable cparams 〈〈[codebase : Executable URL

heapsize : N

defaultstacksize : N

. . .

]〉〉

parameterInfo(codebase) ⊂ [PI | mode = WI ; default = {} ]
parameterInfo(heapsize) ⊂ [PI | mode ≥ RW]

run − timeOperations ::= readdiagnosis V diagdata〈〈 DATA 〉〉

(193)
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3 Operational Semantics of TCI Subsystems — Messages and Behaviors

AC Component

ActorClass[configurationParameters ]

configurationParameters ::= component cparams 〈〈[executable : LUID

componentClassIdentifier : TextString

stacksize : N

. . .

]〉〉

parameterInfo(executable) ⊂ [PI | mode = WI ; default = {} ]
parameterInfo(stacksize) ⊂ [PI | mode ≥ WI]

run − timeOperations ::= start

| stop

| getStatus V componentState〈〈{halted,running}〉〉

. . .

(194)

AC RBQ

// . . . could be called
”
AC SignalDrain“ !!

ActorClass[configurationParameters ]

configurationParameters ::= rbq cparams 〈〈[ valueType 〈〈 SIMPLETYPE 〉〉

]〉〉

run − timeOperations ::= writeQ 〈〈 getconfigurationparameter(”valueType”) 〉〉

parameterInfo(valueType) ⊂ [PI | mode = ”RO” ∨ mode = ”WI” ]

(195)
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3.14 Population Layer : Predefined and Required Actor Classes

AC Watchpoint

ActorClass[configurationParameters ]

configurationParameters ::= watchpoint cparams 〈〈[executable : LUID

flavourdependentpositioninformation : DATA2

flavour : P {break, protocol, condition}

active : BOOL

curvalue : DATA1

condition : DATA1 7 7→ BOOL

// condition : P DATA1

. . .

]〉〉

parameterInfo(executable) ⊂ [PI | mode ≥ WI ; default = {} ]
parameterInfo(flavour) ⊂ [PI | mode ≥ WI]

run − timeOperations ::= start

| stop

| getcurvalue V watchedvalue 〈〈 DATA1 〉〉

| getStatus V breakpointData〈〈DATA3〉〉

. . .

(196)

AC TransCoder [in : CodingIdent , out : CodingIdent ]

ActorClass[configurationParameters ]

configurationParameters ::= transcoder cparams 〈〈[inputCoding : CodingId

outputCoding : CodingId

]〉〉

parameterInfo(inputCoding) ⊂ [PI | mode = WI ; default = {} ]
parameterInfo(outputCoding) ⊂ [PI | mode = WI ; default = {} ]

run − timeOperations ::= putQ〈〈 DATA 〉〉

Vvalue event 〈〈 DATA 〉〉

// implements an RBQ- and an RBD-like behavior !

(197)
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4 Data-Link Layer

AC GlobalTestParameters [ testParameterList ]

ActorClass[configurationParameters ]

configurationParameters == testParameterList

4 Data-Link Layer

4.1 XML, the Language of the Toasters

In the low level data-link layer two different ways of encodings are foreseen by TUB-TCI:
firstly the standardized, XML based encoding, which must be supported by any imple-
mentation, secondly the proprietary binary encodings for high-speed-channels (HsLink,
see section 3.13), which need not to be standardized or compatible.

All activities in a TUB-TCI-system are defined by service request interactions be-
tween subsystems. These are realized as the exchange of deliver()-messages and other
messages.

Therefore one dedicated encoding must be chosen, and be declared normative, which
maps all possible deliver()messages uniquely and invectively to XML-encoded fragments.

To construct this basic encoding, several mappings have to collaborate to translate
the Z formulae of the main specification into

”
physical“ XML. As far as possible existing

standards should be used for these mappings. The following areas have to be covered:

• All constructors into free types, which are defined as a fixed set by the TUB-TCI-
core-language itself, must (and the containing schema name may) be represented by
an XML ELEMENT tag value, i.e. an XML

”
element type“.

• The same is true for the constructors defined on
”
population layer“, e.g. the struc-

tures containing configuration parameter values of a given actor. That means that a
canonical construction method must be defined to translate the schema definitions
of an actor class into an XML content definition, similar to above.

• The encoding of primitive types and values (int, float, string, etc) should be
cited from some existing, simple standard, e.g. SOAP([soa00]), Schema ([xml02]),
XER ([xer02]).

• Large binary encoded parameter values (e.g. the actual code to be executed by an
RBD) must be transported by introducing a specialized XML NOTATION.

• The use of XML ATTRIBUTEs should be avoided.

4.1.1 XML Conformance Levels

Despite the normative representation of data as XML Elements, there are still many degrees
of freedom in implementing the concrete textual appearance.

We suggest to allocate some Information Objects and to define the formal confor-
mance level of a concrete TCI implementation as a subset of this conformance objects,
i.e.

conformanceLevel == TCI implementation → P conformanceObjects

Some illustrating examples for Conformance Objects can be found in table 7.
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4.2 High Speed Binary Real-Time Channels

Table 7 Examples of XML Encoding Conformance Level Objects

global.orgs.NN.NN.NN.tci.busformat.xml.featuregroup ...

〈almost any〉 .standard = Default value
Implements neither more nor less than the standard

.TMPplus Implements more than the standard, but has not yet
been registered as conformance object.

.TMPminus Implements less than the standard. Only allowed for
internal use while developing an implementation.

.compression .none Plain text on the wire !
.plus Does additionally understand a proprietary com-

pressed format.
.minus Does only understand a proprietary compressed for-

mat.

.canonical .none No canonicalization
.plus generates canonicalizes XML, e.g. no blanks around

tags, no additional attributes etc.
.minus Does only understand canonical XML, e.g. does not

understand additional blanks etc.

4.2 High Speed Binary Real-Time Channels

In the current approach the declaration of the formats of the HsLinks is not represented
formally, — not even on the concept level, not to speak of the object language.

So the TM and/or the compiler (which generates the ETS, i.e. the code of the
RBDs) and/or the run-time library must be aware of the actual ways of encoding and
the compatibility relation on the high-speed I/Os of all currently installed actors. Only
this allows to reject inconsistent connection requests, or even to repair them by inserting
adapting trans-coder-subsystems automatically into the signal-flow.

In the main model all those checks have to be hand-coded. The extension suggested
in 5.2.2 below will add the formats of encoding to the conceptual level and to the object
language, to support further automating of signal flow management.

5 Perspectives of Future Work

At the time of writing, TUB-TCI is only a first proposal for an overall model-based speci-
fication of the somehow

”
abstract“ behavior of an heterogenous test ensemble.

In practice, today most of the labor is invested in the adaption work of concrete
electric devices of concrete vendors, model types and serieses. Therefore the feasibility of
our approach can only be proved by applying it to this concrete practice.

In course of such an implementation activity, there will be two axis for further con-
cretization: (1) considering and exploring variants of the existing approach, and (2) com-
pleting the overall test definition architecture by further (more basic and smaller) specifi-
cations (cf. figure 14).

99

 markuslepper.eu

 IS
SN 1

43
6-

99
15

http://markuslepper.eu
http://www.worldcat.org/search?q=1436-9915


5 Perspectives of Future Work

The main specification text of TUB-TCI, i.e. the specification as presented in section 3,
did present just one consistent model (referred to as

”
main model“ in the following).

For sake of readability, possible variants and alternatives (w.r.t. details, but also to
fundamental decisions) have mostly not even been mentioned when presenting the main
model in section 3.

In the first section we therefore list some possible variants which appeared in course
of the modeling process, and which seem to have fundamental significance.

The second section briefly describes some related specifications, which would be help-
ful when implementing TCI.

5.1 Open Issues, Variants in Design Decisions

5.1.1 Locally Generated Identifiers

The centralized allocation of identifier values for dynamically created actors (= LUIDs)
has been introduced in the main model as a strong means for providing overall referential
integrity, cf. section 3.10.1.

Since it does introduce substantial overhead even in trivial situations, a modified
approach could define like

LUID == NodeIdent × N

where the second component of LUID is a numeric identifier allocated locally by the
NodeServer, whenever a local factory’s creation method is called. In this case the hosting
node of any actor would be identified by the value of its LUID immediately. The initial
lookup() request to CAS would be omissible.

But then the responsibility for referential integrity of LUIDs must be provided by
the NodeIdent allocation mechanism, e.g. by using fresh NodeIdents for each reset()-
epoque. The loss of synchronization w.r.t. actors and LUIDs would then be trapped as a
node-addressing error on the trns-level.

5.1.2 Finer Control of Reset Levels

For a finer control of reset one could distinguish different reset levels, e.g.

• reset trns layer, invalidate all TAIDs.
• delete all actors, invalidate all LUIDs.
• terminate all active threads representing RBDs, and reset all actors, but keep all

actors allocated and in the
”
living“ state (cf. figure 11).

For large test ensembles these partial resets could become appropriate w.r.t. perfor-
mance. This will become apparent not without some experience in concrete experiments.

On the other hand this change of concept would make all analysis and proofs w.r.t.
consistency and safety more complicated or even infeasible.

5.1.3
”
External“ Reuse of Actor Factories

The main model allows factories to create additionally (more than one)
”
sub-actor“ sub-

systems as auxiliary devices, when explicitely called to create one single
”
main actor“, see

3.10.2 above. In the main model there is a specialized call from Factory to CAS, allocat-
ing a sequence of LUIDs for a given sequence of actor classes, and declaring them to be
sub-actors.
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5.2 Related and Future Specifications

Figure 14 TCI as Part of a Larger Architecture

Coding Objects

Actor Classes

Node Caps Node Topol

TCI

A different approach would be to treat the creation of sub-actors by the factory of the
main-actor totally canonical , i.e. letting the factory call the factories for the sub-actors

”
externally“, exactly like a top-level

”
create“ call from any RBD.

This would have the advantage of more re-usability , since factories of complex actor
subsystems can reuse more primitive devices (timer, ports, clocks) from third party ven-
dors. The price to pay is that all run-time communication from main-actor to sub-actors
has also to be performed by the

”
official channels“, i.e. TCI-communication.

Please notice that in this case (a) either the CAS has no information about the
sub-actor relationship, or (b) the protocol of the create() message must be extended by
the corresponding data.

5.2 Related and Future Specifications

In a first implementation of TUB-TCI, many definitions and parameters will be realized in
a

”
hard-wired“ manner.

Nevertheless further specifications of semantic models and their encodings are desir-
able to reach full flexibility and a higher degree of possible automation. The necessary
auxiliary specifications are shown in figure 14 and will be briefly described in the following
sections.

5.2.1 Encoding of Actor Class Definitions

In the main model the Actor Class values are communicated without being realized on
the object level of the language. If using only the main model, the NodeServers have to
decode the identifying name of the actor class in any create request

”
manually“ and call

the appropriate Factory in a hard-wired manner.
The correctness of configuration parameter values is checkable by the factory also

only by hard-coding, — the same is true for all verifications of parameter values done in
advance by TM or others.

It is desirable (for automated allocation of resources, automated validation of pa-
rameter value combinations, definition of local negotiation mechanisms etc.) to realize
the actor class definitions also on the object level of the language. For this purpose the
XML encoding rules must be enhanced only by some encoding for the constraint expres-
sions contained in the Z-schemas, which define the actor class. For this purpose some
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5 Perspectives of Future Work

appropriate existing standard mapping should be chosen.

5.2.2 Coding Objects

For a more precise declaration of the High-Speed Run-Time Communication Channels
(= HsLinks) the transmitted data type and its encoding must be representable in the
declaration language.

The further imposes no problems, since a complete language for type and abstract
data construction must be available anyway. But the declaration of the encoding is still
totally open.

From the viewpoint of TUB-TCI, different encodings would be represented by a set
of

”
Coding Objects“. There must be (1) a set of predefined Coding Objects, and (2) a

mechanism for constructing new Coding Objects, i.e. some means offered by the object
language.

The existing standardized approach of ECN ([ecn01]) seems not sufficient, and a nat-
ural and clean definition of a language for encoding construction is still a major issue for
R&D.

5.2.3 Node Class Capabilities Description Format

The two pre-going extensions are required by the next specification module (in figure 14
called

”
NodeCaps“) which allows to declare the capabilites of the hardware nodes contained

in a given Test Ensemble (TEns) : The definability of actor classes, as introduced above,
implies the definability of Factories, needed as the central capabilities of each hardware
node. Additionally, the (Z-based ) constraint language can be used to specify e.g. upper
limits on the number of instances of certain factories.

It is an open issue which means for abstraction are practically needed with this
declaration language, e.g. if there is a class system with inheritance, or a class-less object
system with

”
copy-down“ inheritance, which kind of parameterization is appropriate, etc.

A similar mechanism is needed for Busses (on different levels of abstraction, i.e.
from data-link-level wires to OS-level message channels). This declaration language will
probably substantially import from the Coding Object declaration language.

5.2.4 Node Topology Description Format

As soon as Node Classes (including the set of hosted Factories) and the classes of the
connecting Busses are describable, a language for describing the topology of a total Test
Ensemble (TEns) is definable, and seems highly promising w.r.t. further automization.

Acknowledgments

The author wants to thank his colleagues Baltasar Trancón-y-Widemann and Jacob

Wieland for support and discussion. Without them this paper would not have been
written.

Special thanks also to Ina Schieferdecker and the colleagues from testing
technologies, Berlin.

102

 markuslepper.eu

 IS
SN 1

43
6-

99
15

http://markuslepper.eu
http://www.worldcat.org/search?q=1436-9915


References

References

[BCPR99] Mohammed Bennattou, Leo Cacciari, Régis Pasini, and Omar Rafiq. Prin-
ciples and tools for testing open distributed systems. In IFIP TC5 12th In-
ternational Workshop on Testing Communicating Systems. Kluwer Academic
Publishers, 1999.
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