
Automated Test Case Generation from Use Case
Specifications

Markus Lepper

Technische Universität Berlin/ISTI/ÜBB
lepper@cs.tu-berlin.de

Abstract Automated test performance and automated test case generation have
been topics of increasing interest in academic research and are of high relevance
to industrial practice.
Based on the analyzation of existing industrial documents and habits, the paper
presents (1) a modeling language for requirement engineering, giving exact se-
mantics to the well-known, bur usually only imprecisely specified

”
Use Case“

approach, (2) a practical-oriented architecture for integrating well-founded for-
malisms into existing semi-formal documents, and (3) an algorithm for deriving
test cases with full coverage properties by means of constraint resolution.

1 Introduction

1.1 Use Case Specifications: Industrial Practice and Academic Research

Describing a system’s behavior by filling in Use Case Templates is a widespread means
in industrial practice, — during the requirement specification phase as well as in early
system design steps.

This specification technique can be called semi-formal: The overall system specifi-
cation (or description) is given by a set of files or text documents, each of them describ-
ing one single Use Case, i.e. one cycle of interactions between two or more subsystems.

Below this level, the text documents are structured according to some (in-house)
Use Case Template, which defines the fields to fill in, — firstly for meta-information
like a key name, list of the authors, editing history, short description, comments etc.

Central substance of such a use case description is a (more or less formally encoded)
specification of a family of sequences of interactions between the involved subsystems.
In practice this is mostly notated as a simple ms-word (et.al.) listing format contain-
ing natural-language descriptions of the interactions. This specified set of sequences
is called the

”
good path“, because it describes the required system’s behavior in the

absence of errors or interruptions.
Normally a separate section is foreseen for

”
ugly paths“, i.e. the interaction se-

quences happening in response to some error, malfunction or user interruption 1.
1 We found even templates where all timing requirements formed a separate section. For each

timing requirement the event of the
”
good path“ it was meant to be related to, was only indi-

cated informally, by natural language. But, on the other hand, all those templates which relate
ugly paths and timing constraints to the steps of the good path somewhat more exactly by re-
ferring to the automatically generated item numbering in the

”
list format“ of the

”
good path“

are not robust against editing the latter!

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

There are ongoing research activities on the industrially oriented level of software-
engineering, discussing template design, standardization etc. [Col98], [Ber98].

This level of structure will be treated in this paper, and must not be mixed up with
the next layer above, represented e.g. by the UML Use Case Diagrams. These repre-
sent an algebra

”
on top“ of the single Use Case definitions, and have been explored

mathematically in [BGK97] and [Ste01].

1.2 Benefits and Problems when Introducing “Formal Methods”

The theoretic benefits for using
”
Formal Methods“ are widely accepted in academia as

well as in industry. Let us define
”
using formal methods“ as simply using (for specifi-

cation and modeling purposes) only languages with a mathematically precisely defined
semantics2. Doing so, (suddenly and magically) it may become possible to perform au-
tomated coverage analysis, automated transformation, simplification and visualization,
symbolic computation, reasoning and proving etc. on the specifications and models.

In practice there are severe obstacles against an effective introduction of
”
better

tools“:

– Disturbance of ongoing production processes must be minimalized.
– There must be acceptance and easy learning for new tools.

The central requirements for success in introducing formal methods into industrial
processes seem to be (1) maximal adaptability to existing formalisms, methods, tools
and habits, — and (2) personal acceptance of tools and languages by the engineers,
— again requiring adaptability. So the idea rose quite naturally to establish a gradually
refinement from existing semi-formal industrial use-case description documents to well-
founded formal specifications.

Since Use Case documents are mainly text-based, this met luckily with the politics
of the author and his colleagues, to support the application of

”
formal methods“ by

supplying tailored, domain-specific languages to the practitioners. and fits well to the
concept of multiparadigmatic design, as presented in [PCDG00].

2 The Approach

In the following we present an abstract and generic architecture called , de-
signed to support such a gradual refinement. It is the result of a small project in meta-
specification, carried out with partners and customers from industry, to capture the ex-
perience and results of analysis into an abstract system architecture3.

2 Like DAVID L. PARNAS said,
”
Why call it ’formal methods’? It’s just applying mathematics!“,

— panel discussion at IFCEM’00, York.
3 Since the level of description is highly abstract in the following, and the results may seem to

be rather
”
theoretical“, we want to mention explicitely that indeed all decisions on the detail

level try to be a
”
condensed concentrate“ from the analyzation of existing, practically used

industrial specification documents, and intensive discussions with engineers, developers as
well as specifiers.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Due to limited resources of this design project only small parts could be imple-
mented, but large parts, including the central functionality, had already been imple-
mented in pre-going projects, by others and the author.

The paper centers of test case derivation by constraint resolution and the presenta-
tion of an adequate specification language L2

S , so further results of the project
are shortly described in an appendix.

Please note that the following is written in firstly from the viewpoints of System
Architecture and Language Design. In the field of Constraint Resolution the author is
just a user, though qualified enough to judge that the constraint solvers required by the

architecture must be of
”
cooperating“ style, as in the integrating approach of

[Hof01].

2.1 Foregoing projects

The concept is based on the experiences and results of foregoing common
project of TU-Berlin/ÜBB and daimlerChrysler FT3/SM. In this context the basic
problems of semantics, of translating domain languages into an executable model, and
executing test protocol evaluation, have been solved [GL00]. Two case studies had been
modeled, an Automated Teller Machine (just two agents, a human and the ATM) and
an elevator (a multi-agent system, since more than one user are supported).

This had been done using the ZETA system, which is an outcome of the ESPRESS

project ([BG99],[BG98]). The use case domain languages were translated to terms
in Executable Z, which were evaluated by the ZAM, a machine designed and real-
ized by WOLFGANG GRIESKAMP, which can evaluate a large subset of Z expres-
sions [Gri99,Gri00]. Recently this approach has been carried over to the semantics of
AsmL [GLST01].

2.2 Applicability of our Approach

The approach and architecture is applicable to all behavior specifications,
which come in form of specifications of finite sequential operations, and fulfill the fol-
lowing structural properties:

1. All operations will (at last) be represented by some
”
physical“ interaction, i.e. some

method call, PDU exchange or electrical action which is detectable by an automatic
system.

2. The structure of the system’s behavior must be cyclic and contain one single

”
Global Idle“ state. It is a widespread opinion on the semantics of Use Cases,

that such a
”
single global idle“ is the state taken by the system in the absence of

any external stimulus, and that after any stimulus the system will return to
”
global

idle“ in finite time.
3. Specification and Test are both pure Black Box style. There is no knowledge on

any
”
inner state“ of any subsystem. The

”
state“ managed by the formalism L2

F
presented below is just an observation state, i.e. an auxiliary memory into which
the observing process can store some historic data on its passed observations.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

2.3 Auxiliary Language Modules

M

(kernel calculus)

(parametrization)

(values) (types)

LP

LD

LF

LS

Figure1. Layered Languages

The requirement for adaptability, as men-
tioned above, led to the basic design of
a collection of

”
layered languages“, i.e.

different
”
modules“ or

”
aspects“, which

can be plugged together to form a tai-
lored specification language to fit into an
established industrial context.

One possible partitioning is (cf. fig-
ure 1) :

– LF, a layer which provides the no-
tions of basic and universal math-
ematics, called

”
foundation lan-

guage“.
– LS, the central specification calculus.
– LD, the overall document structure

seen as a
”
language“.

– LP, the definition of the
”
physical“

information which is to be monitored
in an actual test environment.

Each instance of a
”
foundation language“ LF represents a basic mathematical

toolkit, serving as a basis to give semantics to varying, most different upper layer in-
stances. Each LS represents a small

”
specification grammar“, which may vary with

projects and applications. With LD the
”
legacy habits“ of representing specifications

(and reports etc.) as disk files, data base entries, printed copies etc. is modeled as a
”
lan-

guage“. This is necessary for integrating the semi-formal documents into an executable
program. Finally LP defines the mapping of the logical world of test data messages to
the

”
physical“ bus messages, hardware signals etc., which are produced or received by

the involved subsystems.

Foundation Language LF Each instance of a
”
foundation language“ has to provide

– a type language,
– a corresponding value language,
– a set of predefined types and values,
– together with corresponding predefined functions, partly written as operators in

the value language.

The most important demand to this layer is political : The mathematical language
foundation language LF must be accepted by all participants of a project. So

”
seen from

outside“ it should resemble a kind of
”
common high school mathematics“, the notations

should be somehow known, the semantics should be explainable in a few words etc.
Seen from the inside all this is merely impossible: The task of giv-

ing well-defined semantics (in the strict mathematical sense) to any lan-
guage is a wide field of research on its own, hosting hundreds of pub-
lications, the results of which can hardly be explained in a few words.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

[V0] [T0]

i : Ident

T ::= T = SET T | SEQ T | MAP T1 T2

| DATA (in Tn)+

| integer | float | text | . . .
| T0

e ∈ E ::= built-in denotation
| V0

| if p then e1 else e2

| e1 (+ | - | * | . . . | ∪ | ∩ | . . .) e2

| { e1 , . . . , en • p }
| 〈 e1 , . . . , en • p 〉
| { e1 7→ e′1, . . . , en 7→ e′n • p }
| [i1 7→ e1, . . . , in 7→ en • p]

p ∈ P ::= false | true
| e1 (< | ≤ | . . . | ⊂ | ∈ | . . .) e2

| p1 (∧ | ∨ | . . .) p2

{false,true} ⊂ EVALUE ⊂ E ∪ P

Figure2. Example Syntax for a Basic Foundation
Language L1

F [V0, T0]

In an application-oriented
project like this task can
only be accomplished by map-
ping the semantics of an LF

onto some well explored formal-
ism like Z or AsmL. But fur-
ther understanding of these for-
malisms also requires deep con-
siderations w.r.t. axiomatization,
logic, definedness etc.

Luckily in practice this di-
chotomy hardly matters: Con-
sider e.g. the little foundation
languageL1

F as given in figure 2,
which has been designed for the
special needs of a certain indus-
trial project, but still is of suffi-
cient generality.

The pure syntax, together
with some

”
rough“ approxima-

tion to the semantics, can be ex-
plained to any developer in a
few minutes. We as implemen-

tors, and not the applicants, have the problem that the pure syntactic definitions are
much too rich, — that the language has to be restricted to an executable subset, which
has to be identified and recognizable4.

The pure syntax alone would of course allow the applying engineer to write down
e.g.

”
self-applications“ and

”
Russel-sets“, but he or she will mostly not intend to do so!

Only indirectly, in the transitive closure of some (probably erroneous) circular defini-
tion, these anomalies can appear in daily practice.

The type language of L1
F contains

– The type constructors SET , SEQ and MAP , .
– A means for defining Free Types.

The given types should include (at least) one Integer and one Floating Point type, and
some kind of

”
Text“ or

”
String“ type.

At this point one sees that L1
F is not a really

”
abstract mathematical“ language, but

some decisions were taken due to pragmatical reasons :

– It would have been much
”
cleaner“ to treat

”
Free Types“ as syntactic sugar, realiz-

ing them by maps or by sequences or by introducing a plain product type construc-
tor.

4 The field of typing could not be worked upon in the scope of this project. Any type system,
which should be implemented for such a front-end, is therefore primarily needed for restric-
tion of the pure syntactical language, e.g. forbidding free types as leaf value types, thereby
eliminating the problem of referential un-computability.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

But the Free Type construct (1) can rather easily be explained to any domain expert
who is acquainted to things like

”
struct“ in C or C++ or

”
object“ in Java,

and (2) it can be used to describe both user defined
”
data structures“ as well as user

defined
”
enumeration types“ rather naturally.

So it has been included as first class resident.
– Finite Mappings became first class resident due to the practical needs and habits of

the engineers and due to the structure of the SUT (user lists had to be maintained,
etc.).

– Allowing function-valued fields allows to describe behaviors in an object-oriented
style. So second-order functions are allowed, higher order functions are not sup-
ported.

So also this foundation layer can vary with the habits and methods of the users, —
but generally the number of the instance languages of this foundation layer should of
course be kept as small as possible

Description of ”Physical“ Encodings by LP The separate position of the
”
Physical

Language“ LP is also due to pragmatic reasons: The data structures of the
”
physical

entities“ which have to be specified and later observed (e.g. the datagram packages
of a certain bus protocol, — sequences of abstract symbols representing man/machine
interaction, — I/O activities on TTL pins, etc.) may vary much more frequently than the
specification formalism. There may even coexist different of these

”
message formats“

in the same project.
In practice we want these definitions to be extracted automatically from the domain

specific description languages, e.g. from ASN.1 text files, or from IDL data base entries,
etc. At last LP delivers nothing more than a Free Type definition for the atomic inter-
actions. This type definition is used as a parameter when instantiating the specification
languages.

Capturing the relation between documents by LD If collections of separate doc-
uments containing semi-formal specifications shall be comprehended to a consistent
specification, the relation between the different files (or other

”
physical“ entities) has to

be lifted to the formal level.
For this purpose we propose the existence of a language layer L�

D , which may and
probably will vary with the projects. This language can be rather primitive and just
has to establish the relations between the different, separated documents and map their
contents to a formal notion of

”
scope“. E.g. there can be a set of

”
global“ documents

defining overall needed functions and common sub-use cases, and one document for
each single use case.

In the current design we simply foresee one single distinguished plain text file as

”
catalog document“, listing all specification documents and the globally visible

”
global

definitions“ documents. All of the formers will simply be textually included in all of
the latters. In general one would prefer some automated adaption layer for using some
repository system.

Not before some semantics of
”
parameterizable modules“ is defined, (see below

2.4), implementing LD becomes a real task, comparable to a
”
make“ system.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

2.4 The Sequence Specification Languages L
n
S

[LF] [α :: FREET YPE(LF)]

M ∈ P α
L ∈ Locations = F Ident
K ∈ ObsState = Locations 7→ EVALUE
R ∈ Transition = ObsState → α 7 7→ ObsState
e : EVALUE(LF)

σ ∈ Σ ::= M � R
| σ -> e ..e : interleave

(| e ..e : interleave)∗

interleave ::= σ (!! σ)∗ (↑ M � R)∗

Figure3. Syntax of a Sequence Specification Lan-
guage L2

S .

Opposed to the
”
minimalized“

layer LF, there has to be a mul-
titude of instances of LS. They
vary in different dimensions, e.g.
the kind of domain to be specified,
— the kind of tool into which to
embed, — the data structures and
communication topology of the
given project, — existing notation
conventions, e.g. the format rules
of the existing semi-formal legacy
data, — social habits, e.g. the

”
proprietary working slang“ estab-

lished in the developing team, etc.
Since now the

”
use case lan-

guage“ LS is
”
pluggable“, we can

install a syntax specially tailored for the needs of one distinct project:

L
n
S : Basic Calculus Layer The example version L2

S (see figure 3) has indeed been
designed for a concrete industrial project, by abstracting from the real-world examples
of semi-formal legacy documents.

The constructs of L2
S are:

– M � R
Constructor for a basic event, combining a message pattern with an update on the
observation state.

– σ1->e1..e2:i2
Sequentialization within given time window, — the first event of the following
sequence (or interleaving of sequences) has to happen in the given interval after the
foregoing event, i.e. the last event of the former sequence.

– σ1->e1..e2:i2 | e3..e4:i4 | . . .

Alternative paths.
– (σ1,1-> . . .) !! (σ2,1-> . . .) !! . . .

Interleaving of paths: The operational semantics can most easily be explained by a
set of parallel processes (one for each sub-expression combined by the !!-operator)
which merge their outputs into one single trace of events5.

– (i1 !!i2 !! . . .) ↑ M1 � K1 ↑ M2 � K2 ↑ . . .

Exception mechanism: All traces which are prefixes of valid traces w.r.t.
(i1 !!i2 !! . . .) can be ended (out of any depth of nesting) with an exception-
indicating event from {M1 � K1, M2 � K2, . . .}.

5 Please note that this merging must include a transformation to achieve strict serialization of
events, as required by the definition of Trace being a function from time into (always one
single) event.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

PDUs = α [EVALUE(LF)]
T ∈ Time :: LINEAR ∩ T OT ALORDER

∩ DENSE

Trace == Time 7→ PDUs
∀ T : Trace • t0 ∈ dom T

⇒ ∃ ε > 0.0 • ∀ tx| t0 − ε ≤ tx ≤ t0 + ε

• tx ∈ dom T ⇒ tx = t0

Fragments == Time 7→ (PDUs × Transition)
∀F : Fragments • (λ(a, b) • a 7→ b.1)(|F|) ∈ Trace

[[]]T : Σ → Fragments
∈F : Trace × ObsState ↔ Fragments

[[M � R]]T = { t : Time, M′ : PDUs | M∼M′

• 〈 (t, M, R) 〉 }

[[σ1 -> i2 (|π)?]]T

= [[σ1 -> 0.00001 .. ∞ : i2 (|π)?]]T

[[σ1 -> e1 .. e2 : i2 | π]]T

= [[σ1 -> e1 .. e2 : i2]]T ∪ [[σ1 -> π]]T

[[σ1 -> e1 .. e2 : i2]]T

= (∪) (| {(a, b) | tl − e1 ≤ first(b).1 ≤ tl + e2

∧ tl = last(a).1

∧ a ∈ [[σ1]]
T

∧ b ∈ [[i2]]
T

}

[[i1!! . . .!!in]]T = I
[[i1!! . . .!!in ↑ x0 ↑ . . . ↑ xm]]T

= {t : Trace | ∃ t̂ : Trace • ({last(t)} −C t) a t̂ ∈ I
∧ ∃ k | 0 ≤ k ≤ m • last(t).2 ∼ xm }

[[i0 !! ı1!! . . .!!in]]T

= (∪) (| [[i0]]T × [[ı1!! . . .!!in]]T |)

∈F : Trace × ObsState ↔ Fragments
(t, o) ∈F F

⇐⇒ ∃ f : F • t.first.1 = f .first.1
∧ t.first.2 ∈ f .first.2
∧ o ∈ dom f .first.3
∧ o′ == (f .first.3)(o, t.first.1)
∧ (t.rest, o′) ∈F f .rest

∨ (t = {} ∧ ∃ f : F • f = {})

Figure4. Semantics of a L2
S .

The definition of
these constructors is
derived from the an-
alyzing of legacy use
case templates: The no-
tation supports timing
windows as first class
resident, — the

”
excep-

tion“ mechanism re-
flects the

”
ugly paths“

found in use case tem-
plates and allows to
give more precise se-
mantics by giving to
them an exact

”
scope“.

The interleave op-
erator !! has been suc-
cessfully implemented
in the ZetA-version
[GL00]. There the se-
mantics of parallelism
had been chosen to
be

”
CSP-like“, i.e.

common message
patterns (=

”
events“)

were consumed by
all parallel processes
simultaneously.

It seems that in
practice the interleave
operator will mostly
used on top-level, for
combining independent
use cases to one single
system behavior6.

Figure 4 gives the
semantics of this lan-
guage by defining a se-
mantic function [[]]T

which assigns sets of
traces and state transi-
tions to syntactic con-
structs, and the fulfill-

6 Please note that there is no general concept yet to give timing constraints on events of different
interleaving paths.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

ment relation ∈F, indicating if a given trace is part of the semantics of a given fragment
(together with an initial observation state).

L
n
S : Further Layers L2

S , as presented so far, is completed by further language mod-
ules, only the first of which is necessarily required. Not all of these modules have been
subject of deeper research in the past project.

– Context Semantics, Bindings and Expression Evaluation.
In L2

S , as presented so far, the sets of accepted messages
”
M“ and the transitions

of the observation state
”
R“ are just given as abstract semantics, i.e. as pure mathe-

matical objects. Still missing is a means for really constructing these objects.
This is achieved by adding locations, and a certain notion of context. In such a con-
text all expressions which contain identifiers (= names of locations) are evaluated
by mere substitution as usual.
Data construction could of course also be achieved by more abstract (therefore more
versatile) means, e.g. a general fix-point semantics, but the cultural background of
the personnel makes an

”
imperative“ approach more likely to be accepted.

A compact encoding of this language layer will be discussed in 3.1.
– Abstraction.

Of course the specifying engineer will need some means for abstraction. Our anal-
ysis showed that constructs like a parameterized

”
GOTO“ and

”
GOSUB“, i.e. con-

tinuation and non-recursive function calls, are sufficient and well-enough known to
the engineers.
Seen from the semantic aspect, this layer indeed introduces functions, which eval-
uate to specification formulae of our basic calculus.
Implicit abstraction is introduced by implicit sharing, as e.g. in embedded or con-
structions, where different alternatives with identical continuation shall be describ-
able by some notation like a ->(b1 | b2 | . . .) -> c

– Recursion / Inner Loops.
There should be some combinators like those known from

”
Regular Expressions“

for convenient denotation of
”
inner loops“, as used in the example of figure 9.

The same effect could be reached by the more general means of allowing recursive
functions, which in most cases will be too strong a means: Important transformation
and analyzing techniques become infeasible due to the power of the specification
language.

– Modularization.
This area partly overlaps with the L,

D the language for document organization, see
above 2.3.
A consistent concept of modules and parameterization for use cases has still to be
developed, strongly considering the results from research on the use case diagram
level, like[BGK97], [Ste01].
As soon as such a module concept is installed on the level of semantics, the doc-
ument organization language L(

Dand any technical adapter to some repository) has
to be implemented accordingly.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

3 Test Data Generation by Constraint Resolution

Message Condition observ. State Transition

("Global Idle")

Figure5. A Behavior Specification seen in
the linearized model

For subset of L2
S presented above, and of

similar specification languages, it may be
possible to generate test data automati-
cally and to perform coverage analysis.

Several methods are known to gain
information etc from behavior specifica-
tion, cf. the survey given in [Sei01].

The one presented here supposes that
all possibles paths through the specifica-
tion (from

”
Global Idle“ back to

”
Global

Idle“) can be unfolded into one single
finite tree of possible system behaviors.
This implies that all

”
inner loops“ are fi-

nite and limited at compile time, and that
the cardinality increases linear with every

”
inner alternative“.

The principle is that for all
”
leaves“

of the tree of possible paths through the
specification a collection of constraints is
collected, which must be fulfilled for this path to be taken. Then for each possible path
this constraint system must be resolved, i.e., one representing solution must be found,
which will force the system to take this special path.

The main classification of paths under this concern is, if the decisions are solely
controlled by the test environment, or are in-deterministically decided by the SUT.
This issue will be presented in more detail at the end of this section.

3.1 Constraint Semantics

As mentioned above, the specification calculus L2
S is enhanced by means for making

assignments to locations of the observation space and for filtering message sets.
This can be depicted as applying to the grammar of L2

S from figure 2 the substitution

M � R V EventDescription

. . . in combination with the grammar . . .

EventDescription == α [!(Ident) | Expr |] ;
(Ident ::=Expr; | Pred;)∗

For ease of discussion and brevity of the algorithms we represent these structures
using the type Node from figure 6:

In this encoding the message patterns appearing in a a path specification, and match-
ing a set of PDU exchanges, are instances of the free type α, given by the structure
of atomic events as defined by LP, extended by additional values MsgParam for the

”
leaves“ of the data: Each data field can either be ignored (ignore), or a constant sin-

gle value calculated from the observation state can be required mandatorily (const),

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

or a new binding of a variable can be established for further calculation and condition
testing (read).

A condition is simply an Expr of type boolean, which has to evaluate to true
for the condition to be met.

A state transition is a set of pairs of locations of the observation state and expres-
sions, with all of the former appearing at most once7.

Starting with
”
Global Idle“ (i.e. the point to which all traces of the system must

return periodically), the set of all possible paths now appears as a three-colored tree, cf.
figure 5 8.

3.2 Collecting Constraints for Each Path

The collection of the constraints
”
ruling“ a given path are rather trivial and mere syn-

tactical transformations. They are realized by the function [[]]C, as given in figure 6.
The main purpose of [[]]C is to collect all conditions in the path and conjugate

them to one constraint system cs. Before this, all identifiers in all expressions will be
substituted by indexed versions, indicating the step of last assignment to this location,
and thus eliminating any ambiguity by the (necessary) reuse of identifiers. For this
purpose the step number is calculated in the variable k and and instantiation context κ

is maintained, linking each identifier to the step number of the last assignment (either
by an Assign node or by using it as a read parameter of a Msg).

Firstly, all expressions are instantiated by replacing each variable reference by the
indexed version, depending on this step number of last assignment9.

Then the constraint system cs and the InstContext κ are updated, depending on the
type of Node :

Test The (instantiated) expression is simply added to the constraint system.
Assign All single assignments in this node are changed to equalities, which are added to

the C.S., and κ is updated to the current step number for all identifiers a value is
assigned to.

Msg This is the most complicated case. Each binding of the data positions of the selected
free type is processed independently:

• ignore bindings are simply — ignored.
• const(e) bindings are replaced by the read of a freshly introduced tempo-

rary variable Jk, and the equality Jk = e is added to the constraint system cs.
• read(i) bindings just update the instantiation context.

7 It is easily seen, that all aspects of M � R from the semantics of L2

S can be compiled into
sequences of Nodes: The partiality of the Relation R from the semantic model is explicitely
coded as Test nodes; the value of the transformation relation is coded as set of assignments
to locations of the observation state, and each message set is coded by an Msg node, containing
bindings from critical message parameter values to local variables, and followed by appropriate
Test nodes containing predicates on these local variables.

8 Please node that in figure 6. each Path is looked at from leaf to root (as a
”
Co-Tree“), i.e. it is

given as a pair of a Node and the preceding path (or top in case of the root of the tree).
9 Each Node has to be modified accordingly, i.e. all identifiers have to be replaced by the cor-

rectly indexed version. For sake of readability this trivial step is left out in the formulae of
figure 6.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Node ::= Assign 〈〈 P (Location × Expr) 〉〉
| Test 〈〈Pred〉〉
| Msg 〈〈MsgTags × seq MsgParam〉〉

MsgParam ::= read 〈〈Location〉〉
| const 〈〈Expr〉〉
| ignore

Path == Node × (Path ∪ {top})
Expr == LF[{}][Location] .E
Pred == LF[{}][Location] .P

InstContext == Ident → Z

IndexedIndent == Ident × N

inst : InstContext × Expr[Ident] 7→ Expr[IndexedIdent]
[[]]C : Path → CS × N × InstContext × Path

[[b]]C = (cs, k, κ, b′)
e′ = instκe

[[(Test(e), b)]]C = (c ∪ e′
, k + 1, κ, (Test(e′), b′))

[[b]]C = (cs, k, κ, b′)
collectA(x, cs, k, κ) = (cs′

, κ
′)

collectM(y, cs, k, κ) = (cs′′
, κ

′′)
[[(Assign(x) , b)]]C = (cs′

, k + 1, κ
′
, b′)

[[(Msg(t, y) , b)]]C = (cs′′
, k + 1, κ

′′
, b′)

collectA(x, cs, k, κ) = (cs′
, κ

′)
e′ = instκe

collectA({i 7→ e} ∪ x, cs, k, κ)
= (cs′ ∪ {ik = e′}, κ′ ⊕ (i 7→ k))

collectM(x, cs, k, κ) = (cs′
, κ

′)
e′ = instκe

κ
′ i < k

collectM(〈ignore〉 a x, cs, k, κ) = (cs′
, κ

′)

collectM(〈const e〉 a x, cs, k, κ) = (cs′ ∪ {Jn = e′}, κ′)

collectM(〈read i〉 a x, cs, k, κ) = (cs′
, κ

′ ⊕ (i 7→ k))

collectA({}, cs, k, κ) = (cs, κ)
collectM({}, cs, k, κ) = (cs, κ)

collectA(x, cs, k, κ) = (cs′
, κ

′)
collectM(x, cs, k, κ) = (cs′′

, κ
′′)

κ
′ i = k

collectA({i 7→ } ∪ x, , k, κ) =

collectM(〈readi〉 a y, , k, κ) =
Error(”Duplicate Assignment to Location i”)
κ i = n ∧ n ≥ 0

instκ i = in

κ i = −1
instκ i = Error

instκ op(e1, . . . , en) = op(instκ(e1), . . . , instκ(en))

Figure6. Collecting Constraints for a given Path

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

The formulae of figure 6 additionally do some error detection, e.g. duplicate use of
identifiers in the same transition step or reference to un-initialized variables.

3.3 Interpreting the Constraint System

A) Cn ∧
∧

m6=n •¬ Cm

B) ∃m, n • m 6= n ∧ [[Cm ∧ Cn]] 6= {} ∧ Dm = Dn
C) ∃m, n • m 6= n ∧ [[Cm ∧ Cn]] 6= {} ∧ Dm = Dn
D)

∧
¬ Cn

E)
∧
¬ Dn

Figure7. Some questions to the constraint system

When performing conformance
tests w.r.t. the given Use Case
specification, the set of partici-
pating actors will be divided into
those forming the

”
System Un-

der Test“, and the others, simu-
lated by the

”
test harness“.

The constraint system re-
flects all conditions which nec-
essarily have to be met for a given path to be taken. Let N1 . . . Nn be the set of paths
through the specification. Let Cn ∧ Dn be the constraint implied by Nn, and Cn be the
part of the constraint, which is controllable by the testbed, i.e. is calculated exclusively
from values contained in messages emitted by the testbed. Assume that Cn ∧ Dn has
been transformed to maximize Cn, so that Dn contains only those constraints which are
not reducible to a controlled value. Now several questions can be asked to this

”
cleaned-

up“ constraint system, cf. figure 7:

A) If this C.S. has a solution, then emitting the corresponding stimuli will force the
test to run into branch Nn (or fail).

B) If this property is true, then there are non-deterministic decisions in the specifica-
tion w.r.t. the testbed behavior.

C) It the C.S. does depend irreducibly on message parameters emitted by the SUT,
then coverage of all paths cannot be guaranteed by the test configuration, but has to
be monitored during test execution, — with no guarantee of ever happening.

D) If there are
”
user data“ combinations, which are not entailed by some path, then not

all possible user inputs are covered in the specification.
E) . . . idem for SUT-generated messages.

3.4 Future Work

Further research is necessary to integrate some features. The most important of these
seem to be:

– The temporal restrictions should also be definable by expressions, and these should
be integrated into the constraint collection mechanism.

–
”
Local Loops“, i.e. loops or recursive calls embedded into a linear path would be of

large value in practical application (c.f. the
”
*“ construct used in 9). Can be treated

with data-flow analysis or
”
spectral analysis“ of the updates.

– The
”
initial state“ has to be modeled and decided. Several strategies seem possible,

— further research is required.
– The

”
interleave“ operator has not yet been integrated.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Acknowledgments
The author wants to thank WOLFGANG GRIESKAMP, microsoft research, who initiated
our activities in the field of Use Cases, all colleagues at daimlerChrysler/FT3/SM and
at their costumers, who willingly supported the analyzing phase, and the colleagues at
TU/ÜBB for critical discussions.

References

[Ber98] Edward V. Berard. Be careful with ”use cases”. Technical report, The Object Agency,
Inc., 1998. http://www.toa.com/pub/use cases.htm.

[BG98] Robert Büssow and Wolfgang Grieskamp. The ZETA System Doc-
umentation. Technische Universität Berlin, December 1998. URL:
http://uebb.cs.tu-berlin.de/zeta.

[BG99] Robert Büssow and Wolfgang Grieskamp. A Modular Framework for the Integration
of Heterogenous Notations and Tools. In Keijiro Araki, Andy Galloway, and Kenji
Taguchi, editors, Proc. of the 1st Intl. Conference on Integrated Formal Methods –
IFM’99. Springer-Verlag, London, June 1999.

[BGK97] Greg Butler, Peter Grogono, and Ferhat Khende. A Z specification of use cases. In
Proc. of the Asia-Pacific Software Engineering Conference and International Com-
puter Science Conference, pages 505–506. IEEE Computer Society Press, 1997.

[BN92] S. M. Brien and J. E. Nicholls. Z base standard. Technical Monograph PRG-107,
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford,
UK, November 1992. Accepted for standardization under ISO/IEC JTC1/SC22.

[Col98] Derek Coleman. A use case template: draft for discussion, 1998. Hewlett-Packard
Software Initiative.

[GL00] Wolfgang Grieskamp and Markus Lepper. Using Use Cases in Executable Z. In
ICFEM 2000, September 2000.

[GLST01] Wolfgang Grieskamp, Markus Lepper, Wolfram Schulte, and Nicolai Tillmann.
Testable use cases in the abstract state machine language. In Proc. of the APAQS
2001 conference. IEEE Computer Society Press, 2001.

[Gri99] Wolfgang Grieskamp. A Set-Based Calculus and its Implementation. PhD thesis,
Technische Universität Berlin, 1999.

[Gri00] Wolfgang Grieskamp. A Computation Model for Z based on Concurrent Constraint
Resolution. To appear in ZB2000 – International Conference of Z and B Users,
September 2000.

[Hof01] P. Hofstedt. Cooperation and Coordination of Constraint Solvers. PhD thesis, Dres-
den University of Technology, 2001.

[PCDG00] Peter Pepper, Michael Cebulla, Klaus Didrich, and Wolfgang Grieskamp. From pro-
gram languages to software languages. Journal of Systems and Software, 2000.

[Sei01] Dirk Seifert. Automatische Testfallerzeugung für reaktive Systeme — state of the art.
Technical Report 2001-16, Technische Universität Berlin, 2001.

[Ste01] Perdita Stevens. On use cases and their relationships in the Unified Modelling Lan-
guage. In Proc. Fundamental Approaches to Software Engineering, number 2029 in
LNCS, pages 140–155. Springer-Verlag, April 2001.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

A Further Aspects of Seamless Integration of Well-Founded Languages into
Existing Semi-formal Documents in Industrial Practice

E
v
a
l
u
a
t
i
o
n

abc()

z
xy

.XML

Testcase
Generation

.reports

Hardware

 Adaptors

 Adaptors
Tool

Domain

Testresult
Evaluation

Visual Feedback

 (maybe "in the loop")

L
S

Figure8. The pipeline

As mentioned above, not only mathematical
and engineering, but also ergonomic (or even

”
pedagogic“) aspects have to be considered

when trying to introduce
”
formal methods“

into industrial practice. Here we present some
single aspects and solutions, as proposed in
the project.

A.1 The Architecture
A central requirement from industrial pro-
cesses is that new tools and methods can eas-
ily be integrated into existing procedures and
habits. This requires a certain versatility and
adaptability w.r.t. different front-end repre-
sentations, which in turn requires a modular
design of the whole processing pipeline. This
modular design of the -software is de-
picted in figure 8.

The role of the front-end layer can be
fulfilled by most diverting editing tools: Ei-
ther graphical or text based or arbitrarily com-
bined. Proprietary tools or general purpose
commercial tools can be used, as long as they
offer the necessary import/export facilities.

The middle-end layer has to be pro-
grammed and consists of two independent
and freely combinable layers: The firsts task
is to translate the front-end representation for-
mat into a normalized intermediate represen-
tation of the specification and data definition

languages (Lx
S and Lx

P, as presented in section 2.3) — and to re-import all diagnosis and locator
information back into the front-end tool. This layer is called

”
tool-adaptor“ in figure 8, since it

varies with the chosen editing tools, while the languages(Lx
S and Lx

P) are kept constant within a
given project.

The second middle-end layer is called
”
domain-adaptor“. Its job is to map the specification

and data format definition languages to the underlying execution model. The mediating data for-
mat between these both layers is an XML based encoding, thus permitting the free combination
of the same front-end tool with different specification languages, and of different front-end rep-
resentations for the same specification language.

The back-end, which has to do test-data evaluation, analysis and generation, are imple-
mented either by mapping the specification structures to some off-the-shelf constraint evaluating
tool (like it had been done with ZAM/Zeta in [GL00]), or has to be implemented from scratch.
Even the last version should be not too expensive, because w.r.t. the industrial practice the speci-
fication languages do not need to support high-order functions, as Zeta did.

A.2 Aspect: Front-end Representation
In the ZeTA based projects a small

”
use case language“ was realized totally embedded into the

Z language: The operators of this language were defined as Z functions on schema data, conve-
niently writable because being defined as

”
user defined operators“, a feature gracefully supported

by the Zeta compiler.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

While everything worked fine on the execution level, and at the same time on the
”
output side“

all typesetting of the specification formulae looked perfectly professional for a mathematician, —
from the the

”
ergonomic“ view of practical typing, all data and all operators had to be de-notated

as LATEX commands, in different LATEX environments. This turned out to be a great problem for
acceptance in industrial practice.

Therefore our basic approach for all front-end considerations implies,
that for each

”
front-end element“ there is a multitude of different lexical

Usecase Geldabheben

• ATM::Aufforderung (KarteEinschieben)
• KD::KarteEinschieben
• ATM::Aufforderung (Geheimzahl)
• � • 0..20 : KD::EingabePIN (?num)

• ATM::CheckPIN (num)
• � • SEC::PINChecked (OK)

• ATM::Aufforderung(BetragEingeben)
• KD::Betragseingabe(?amount)

• Auszahlung(amount)

• ATM::KarteAusgeben
� • SEC::PINChecked (failed)

• ATM::KarteAusgeben
� • 15..17.5 : ATM::KarteAusgeben

Figure9. A simple example with editor controled item lists
(e.g. ms-Word “formats”)

representations, which can be
used interchangeable, freely se-
lected depending on the tools
the engineer is used to, and
which could be used even in a
mixed fashion.

The basic approach from
the Z standard [BN92] seems
canonical and needs only slight
modification. For each

”
token“

or, if necessary, for syntactic
constructs there is at least one
representation each in the for-
mats. . .

– pure
”
Ascii“ text10,

– a unicode character,
– an XML entity or element

definition,
– a LATEX command.

A.3 Implementation as an ms-word plug-in
A basic strategy to increase acceptance and performance is to map syntactic constructs of a speci-
fication language L�

S to so called
”
format“ objects in the

”
microsoft Word“ tool: One list format

can be used to represent e.g. the concatenation operation, another list format to represent alterna-
tives.

So the writer of the specification can carry on using the type setting mechanisms well-known
to her/him, but indeed does write sentences of an exactly defined language. Figure 9 shows an ex-
ample, in which different ms-word list formats are re-interpreted as constructors of the language
L2

S : • means Sequentialization and � means alternatives11.

A.4 Aspect: Smooth Migration by Mixing Informal and Formal Parts of Text
Smooth migration from informal to formal documents can further be supported by an adequate
design of the specification language L�

S : This can be designed that the existing informal interac-
tion descriptions are recognized as comments or as ε-events. So the existing documents as found
in an established industrial project are valid, but

”
empty“, specification documents, and can be en-

riched step-by-step with formal elements, either replacing the lines-of-text with informal content,
or just additionally.

Since the intermediate (or permanently remaining) informal elements have to be treated as
ε-transitions, the semantic layers of the specification language have to be able to deal with the
well-known complications introduced by those. These informal elements can either be eliminated
step-by-step, or may be kept in the documents up to the end of the project as a kind of comment
or documentation.
10 This is what is called

”
email-format“ in the Z standard.

11 Please note that it may be in-house style to use the local language instead of English.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

