
Using Use Cases in Executable Z

Wolfgang Grieskamp Markus Lepper
Technische Universität Berlin, FB13

{wg,lepper}@cs.tu-berlin.de

Abstract
Use Cases are a wide-spread informal method for speci-

fying the requirements of a technical system in the early de-
velopment phase. Z is a formal notation which aims to sup-
port, beside others, the specification of early requirements.
In this paper, we develop a representation of Use Cases in
Z and apply it to several examples. Our focus is on instru-
menting the formalization for black-box test evaluation in
Executable Z, a computation model and implementation for
Z based on concurrent constraint resolution

1. Introduction

Use Cases [9] are a wide-spread informal method for
specifying the requirements of a technical system in the
early development phase. They provide a methodology for
the loose but nevertheless systematic description of aspects
of a system’s behavior. Z [8, 10] is a formal notation which
aims to support, beside others, the specification of early re-
quirements. Combining Use Cases and Z is therefore an
interesting experiment: from Use Cases we may inherit the
methodology – from Z, we inherit a formal meaning, and
thus the possibility to apply tools for consistency check and
validation.

In this paper, we develop a shallow encoding of Use
Cases in Z and apply it to several examples. As a surplus
of our approach, we get consistency checks by Z tools such
as type checkers. However, our focus in instrumenting the
formalization is on black-box test evaluation: given a set of
Use Cases in Z, some input data describing a test-case, and
the output data from a run of the system’s implementation
on the given input, we check by executing the Use Cases
whether the implementation confirms to the requirements –
as far as they are formalized. To this end, we use the ZAP
(version 2) plugin of the ZETA tool environment [2] which
allows for the execution of significant parts of the Z notation
using concurrent constraint resolution techniques [6].

2. Use Cases in Z

What Are Use Cases? There is an ongoing discussion
about syntax, semantics and methodology of Use Cases in

the software engineering community (see e.g. [1]). Op-
posed to the graphic formalisms for combining Use Cases,
e.g. by the “Use Case Diagrams” offered by UML [9], the
means for specifying the contents of a single Use Case is
not agreed upon at all.

The UML semantics state that “a Use Case can be de-
scribed in plain text, using operations, in activity diagrams,
by a state-machine, or by other behavior description tech-
niques. . . .”(UML semantics, cited from [4]). For our pur-
pose of applying formal techniques we need an unambigu-
ous description technique which is amenable to exact rea-
soning such as test evaluation. We therefore develop a
model related to temporal interval logic, explicitely using
nondeterministic choice, repetition and interruption.

In summary, we use the following informal definition of
Use Cases, near to the one found in [3]:

• The systems we observe are characterized by se-
quences of interactions. Sequences of interactions are
called dialogues.

• Each interaction has assigned a certain actor. The ac-
tors are often one human and one technical system,
but several humans can also talk to several machines,
or machines can talk to each other. The important
methodological principle is that we only look at the
observable behavior of each actor and that all internal
state is hidden.

• Use Cases are described by a so-called fragments of
dialogues between two or more actors. A fragment
schematically specifies a set of possible dialogues by a
“pattern” of interactions.

• Fragments can be combined by sequential composi-
tion, nondeterministic choice, repetition, and interrup-
tion.

• We have an (observable) global system state which all
Use Cases share. This extension compared to a “puris-
tic” idea of Use Cases allows us to abstract Use Cases
over some data state. In the fragments we can specify
how this data state is transformed.

Note that we do not restrict our model to only two actors,
as often found in the literature, eg. [3]. Moreover, we do

 markuslepper.eu

 IS
BN 0

-7
69

5-
08

22
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-0822-7

not impose a priori that actors in dialogues do alternate.
Finally, we do not have a builtin concept of “idle” states.

Example: Cash Dispenser. We look at the fragments of
(simplified) dialogues between a user and a cash dispenser
(Spec. 1). The following basic constructors for fragments
are used (a formal definition follows later on):

• actor � action constructs a fragment containing the sin-
gle interaction where actor performs action.

• actor � action / rel is the general version of construct-
ing singleton fragments. In addition to actor � action, a
transformation on the system state is given by the rela-
tion rel. We have actor � action = actor � action / id.

• frag y frag′ is the sequential composition of frag-
ments. After the dialogues described by frag the ones
of frag′ must follow.

• select frags describes a choice between several frag-
ments. frags can be an enumeration of fragments,
but also a set-comprehension: we use the pattern
select{x : A • frag} to introduce a locally bound vari-
able x in fragments, which semantically is the choice
between all possible instantiations of x.

• repeat frag describes the repetition of frag for zero or
more times.

• frag except frag′ describes that frag can be “inter-
rupted” at some interaction which overlaps with the
first interaction of frag′. It is then continued with the
behavior of frag′.

For the cash dispenser in Spec. 1, the type ACTOR de-
fines the actors, user and dispenser. The type ACTION lists
the actions performed. The type State defines the system
state, which is the money reserve of the dispenser (in an
extended version, we might represent here the accounts of
individual card holders). We define two operations Draw
and CantDraw to be used in the fragments which work on
the system state1.

From a methodological point of view, we have to justify
that the visible representation of reserves is not a violation
of our principle that inner system state must not be mod-
elled in Use Cases. We argue that the reserves are observ-
able, since the user may be confronted with the situation
that the dispenser cannot satisfy his requests because of low
reserves.

The fragments are given as follows. Normal describes
the usual process of a disposition. InvalidCard is an ex-
ceptional fragment which can interrupt Normal at the point
where the user has inserted his card; the card is immediately

1These operations are conveniently written as ∆-schemata. For sake
of type correctness these schemata have to be lifted to binary relations
between undecorated schemata, which is done by the ↑-operator. Unfortu-
nately this operator cannot be formulated in a generic way.

Specification 1 Cash Dispenser

section CashDispenser parents UseCases

ACTOR ::= user | dispenser
ACTION ::= askCard | putCard | ejectCard | takeCard |

askAmount | putAmount〈〈Z〉〉 |

ejectMoney〈〈Z〉〉 | takeMoney

State
reserves : Z

CantDraw
ΞState; amount? : Z

reserves < amount?

Draw
∆State; amount? : Z

reserves ≥ amount?; reserves′ = reserves − amount?

↑== λ Op : P(∆State) • {Op • (θState, θState′)}

Normal, InvalidCard, NoReserves, System :
Fragment[ACTOR, ACTION, State]

Normal = dispenser � askCard
y user � putCard
y dispenser � askAmount
y select{amount? : Z •

user � putAmount(amount?) /
↑ [∆State | Draw]

y dispenser � ejectCard
y user � takeCard
y dispenser � ejectMoney(amount?)
y user � takeMoney}

InvalidCard = user � putCard
y dispenser � ejectCard
y user � takeCard

NoReserves = select{amount? : Z •
user � putAmount(amount?) /

↑ [∆State | CantDraw]
y dispenser � ejectCard
y user � takeCard}

System = repeat(Normal except InvalidCard
except NoReserves)

rejected and the dialogue ends if the user has removed his
card. NoReserves is a further exceptional behavior; it can
continue at the point where the user enters the amount to
draw, and where this amount cannot be served because of
low reserves. Note the use of our choice operator, select, to
bind the input variable amount? in Normal and NoReserves.
The overall behavior of the system is described by a repe-
tition of the Normal fragment which can be interrupted by
InvalidCard or by NoReserves.

Formal Model. We define the formal model of our ver-
sion of Use Cases in Z. An interaction is given by the
schema Interaction, generic over the type of actors α and
of actions π. A dialogue is a sequence of interactions:

 markuslepper.eu

 IS
BN 0

-7
69

5-
08

22
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-0822-7

section UseCasesModel

Interaction[α, π]

actor : α; action : π

Dialogue[α, π] == seq Interaction[α, π]

A pattern is a sequence of interactions paired with a state
transition relation over the state type Σ. A fragment is a set
of patterns:

Pattern[α, π, Σ] == seq(Interaction[α, π]× (Σ ↔ Σ))
Fragment[α, π, Σ] == P Pattern[α, π, Σ]

Our basic constructor functions for fragments are defined
as follows2 :

function 65(::)
function 60(�)
function 60(� /)

[α, π]

:: == λ actor : α; action : π • θInteraction[α, π]

[α, π, Σ]

� / == λ actor : α; action : π; r : Σ ↔ Σ •
{〈(actor :: action, r)〉}

[α, π, Σ]

� == λ actor : α; action : π • actor � action / id[Σ]

For the sequential composition, f y f ′, all combinations
of the patterns in f and f ′ are concatenated:

function 50 rightassoc (y)

[α, π, Σ]

y == λ f , f ′ : Fragment[α, π, Σ] • (a)(|f × f ′|)

For the repetition, repeat f , we construct a relation
which concatenates some pattern p1 with some pattern p2 ∈
f . The image of the transitive closure of this relation on
the empty fragment represents all possible concatenations
of the patterns of the repeated fragment:

[α, π, Σ]

repeat == λ f : Fragment[α, π, Σ] •

{p1 : Pattern[α, π, Σ]; p2 : f • (p1, p1
a p2)}

∗(|{〈〉}|)

For the interruption operator, f except f ′, we enrich f
by all patterns consisting of a prefix of p ∈ f concatenated
with a continuation p′ ∈ f ′ such that the interaction at the

2The template declarations for user-defined functions and relations are
new features of standard Z. So is the section-construct which allows seper-
ate type checking and execution of parts of this document.

end of the prefix of p coincides with the interaction at the
beginning of p′. Note that the state transition relation at this
overlapping point is taken from p′, not from p:

function 40 leftassoc (except)

[α, π, Σ]

except == λ f , f ′ : Fragment[α, π, Σ] • f ∪
{p : f ; p′ : f ′; i : N | i ∈ dom p; first(p i) = first(p′ 1)

• ((1 . . i − 1) C p) a p′}

Our last construction operator for fragments, select fs,
is just an alias for generalized union, collecting all patterns
from from all fragments f ∈ fs:

[α, π, Σ]

select ==
⋃

[Fragment[α, π, Σ]]

So far we have seen how fragments are constructed. The
satisfaction relation on fragments, (d, σ) ∈F f , relates the
dialogue d and intial state σ with the fragments f they con-
firm to:

relation (∈F)

[α, π, Σ]

∈F : Dialogue[α, π]× Σ ↔ Fragment[α, π, Σ]

∀ d : Dialogue[α, π]; σ : Σ; f : Fragment[α, π, Σ] •
(d, σ) ∈F f ⇔

(∃ p : f •

σ ∈ dom(fold(o

9)(second ◦ p)) ∧ first ◦ p = d)

Thus, a dialogue and initial state confirms to a fragment
if there exists a pattern in the fragment such that the ini-
tial state is in the domain of the composition of all state
transitions in the pattern and the interactions of the pat-
tern match the dialogue (where fold f 〈x1, . . . , xn〉 denotes
x1 f . . . f xn.)

3. Executing Use Cases

In [5, 6] a computation model based on concurrent
constraint resolution has been developed for Z. A high-
performance virtual machine has been derived, which is im-
plemented as part of the notation and tool integration envi-
ronment ZETA [2]. In this implementation, all idioms of
Z which are related to functional and logic programming
languages are executable. Below, we illustrate the basic
features, and develop an encoding of fragments which is
executable.

Executing Z. As sets are paradigmatic for the specifica-
tion level of Z, they are for the execution level. Set objects

 markuslepper.eu

 IS
BN 0

-7
69

5-
08

22
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-0822-7

– relations or functions – are executable if they are defined
by (recursive) equations, as in the following example:

section ExecExamples

N ::= Z | S〈〈{x : N}〉〉 three == S(S(S(Z)))

add : P((N × N) × N)

add = {y : N • ((Z, y), y)}∪

{x, y, z : N | ((x, y), z) ∈ add • ((S x, y), S z)}

less == {x, y, z : N | ((x, S z), y) ∈ add • (x, y)}

We may now execute queries such as the following, where
we ask for the pair of sets containing all those N less resp.
greater than three:

({x : N | (x, three) ∈ less}, {x : N | (three, x) ∈ less})
; ({Z,S(Z),S(S(Z))},{S(S(S(S(x))))})

Note that the second value of the resulting pair is a single-
ton set containing the free variable x. These capabilities are
similar to logic programming. In fact, we can give a transla-
tion from any clause-based system to a system of recursive
set-equations in the style given for add, where we collect all
clauses for the same relational symbol into a union of set-
comprehensions, and map literals R(e1, . . . , en) to member-
ship tests (e1, . . . , en) ∈ R.

The functional paradigm comes into play as follows: as
known, a binary relation R can be applied in Z, written as
R e, which is syntactic sugar for the expression µ y : X |
(e, y) ∈ R. For computing goals such as application or µ-
values, we use encapsulated search. During encapsulated
search free variables from the enclosing context are not al-
lowed to be bound. A constraint requiring a value for such
variables residuates until the context binds the variable.

As a consequence, if we had defined the recursive path of
add as {x, y, z : N | z = add(x, y) • ((S x, y), S z)} (instead
of using ((x, y), z) ∈ add), backwards computation would
not be possible:

{x : N | (x, three) ∈ less}
; unresolved constraints:

LTX:cpinz(48.24-48.31)
waiting for variable x

Here, the encapsulated search for add(x, y) cannot continue
since it is not allowed to produce bindings for the context
variables x and y. This way, we can control evaluation order.

The elegance of the functional paradigm comes from the
fact that functions are first-order citizens. In our implemen-
tation of execution for Z, sets are full first-order citizens as
well. For example, we can implement operators such as re-
lational image as follows:

[X, Y]

(| |) == λ R : P(X × Y); S : P X •
{x : X; y : Y | x ∈ S ∧ (x, y) ∈ R • y}

We can now, for instance, query for the relational image,
R(|S|), of the add function over the cartesian product of the
numbers less then three:

let ns == {x : N | (x, three) ∈ less} • add(|ns × ns|)
; {Z,S(Z),S(S(Z)),S(S(S(Z))),

S(S(S(S(Z))))}

It is also possible to define the arrow types of Z, as shown
below for the set of partial functions:

[X, Y]
7→ ==
{R : P(X × Y) |

(∀ x : X | x ∈ dom R • ∃
1

y : Y • (x, y) ∈ R)}

This example makes use of universal and unique existen-
tial quantification, which are a source of non-executability
in our setting. These quantifiers are resolved by encapsu-
lated search, and we must be able to finitely enumerate the
quantified range. Thus, if we try to check whether add is a
function, we get in a few seconds:

add ∈ N × N 7→ N
; still searching after 200000 steps

gc # 1 reclaimed 28674k of 32770k
...

In enumerating add our computation diverges. However,
for finite relations it works:

(λ x, y : N | (x, three) ∈ less; (y, three) ∈ less • add(x, y))
∈ N × N 7→ N

; *true*

The example also illustrates a rough edge of our ap-
proach. The Z semantics defines the schema text f : N 7→ N
to be equivalent to f : P(N×N) | f ∈ N 7→N. This treatment
causes serious problems for executability, as we have seen.
In the implementation of executable Z, we therefore discard
constraints introduced by declarations; they are treated as
assumptions which may be utilized by the compiler. If a
declared membership is actually a constraint required for
execution, the user has to place it in the constraint part of
schema text.

Executable Encoding of Uses Cases. The satisfaction re-
lation for fragments, (d, σ) ∈F f , where d is a dialogue,
σ a system state and f a fragment, is not executable in its
descriptive definition from the previous section. We could
perhaps define an executable version of the constructors for

 markuslepper.eu

 IS
BN 0

-7
69

5-
08

22
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-0822-7

fragments and of the satisfaction relation: however, the rep-
resentation of fragments as sets of patterns is a dead-end
regarding efficient executability. The problem comes ap-
parent in the definition of f y f ′ = (a)(|f × f ′|): a
common prefix p ∈ f is not shared in the composition and
needs to be “parsed” again for every p′ ∈ f ′. A better rep-
resentation would use trees, preserving common prefixes in
fragments. Based on this idea we now will develop an en-
coding of fragments allowing the efficient execution of the
satisfaction relation.

For a tree-like representation, we encode fragments as a
set of branches. A branch is either eod – indicating that a
dialogue may end here – or br(i, r, f), where i is the inter-
action at the head of this branch, r the state transition, and f
the followup fragment:

section UseCases

Interaction[α, π]

actor : α; action : π

Dialogue[α, π] == seq Interaction[α, π]

Branch[α, π, Σ] ::=
eod |
br〈〈Interaction[α, π]× (Σ ↔ Σ) × Fragment[α, π, Σ]〉〉

Fragment[α, π, Σ] == PBranch[α, π, Σ]

This definition makes use of an extension of the Z of the
ZETA system, allowing generic free types. Note that the
power operator used for fragments cannot be the general
powerset in order to let the construction be consistent – with
P we denote the “executable” power-sets.

Based on the tree encoding, we redefine the operations
on fragments. The operator templates and constructors for
interactions remain the same and are not repeated. Basic
fragments are constructed as follows:

[α, π, Σ]

� / == λ actor : α; action : π; r : Σ ↔ Σ •
{br(actor :: action, r, {eod})}

For the definition of sequential composition, we use a
technique which is paradigmatic for the tree encoding of
fragments: the composition is lazily “pushed” through the
construction of the tree:

[α, π, Σ]

y : Fragment[α, π, Σ] × Fragment[α, π, Σ]→

Fragment[α, π, Σ]

(y) = λ f1, f2 : Fragment[α, π, Σ] •
(if eod ∈ f1 then f2 else ∅)∪

{i : Interaction[α, π]; r : Σ ↔ Σ

f ′
1

: Fragment[α, π, Σ] | br(i, r, f ′
1
) ∈ f1

• br(i, r, f ′
1

y f2)}

In the definition of the repeat operator, we embed the
recursive expansion of the operator in a set comprehension:

[α, π, Σ]

repeat : Fragment[α, π, Σ] → Fragment[α, π, Σ]

repeat = λ f : Fragment[α, π, Σ] •
{eod} ∪ (f y {b : Branch[α, π, Σ] | b ∈ repeat f})

The definition of f1 except f2 uses similar techniques:

[α, π, Σ]

except : Fragment[α, π, Σ] × Fragment[α, π, Σ]→

Fragment[α, π, Σ]

(except) = λ f1, f2 : Fragment[α, π, Σ] •
(if eod ∈ f1 then {eod} else ∅)∪

{i : Interaction[α, π]; r1 : Σ ↔ Σ

f ′1 : Fragment[α, π, Σ]

| br(i, r1, f ′1) ∈ f1 • br(i, r1, f ′1 except f2)}∪
{i : Interaction[α, π]; r1, r2 : Σ ↔ Σ

f ′1, f ′2 : Fragment[α, π, Σ]

| br(i, r1, f ′
1
) ∈ f1; br(i, r2, f ′

2
) ∈ f2 • br(i, r2, f ′

2
)}

The third case in the set union describes the actual interrup-
tion, where we continue with f2, provided that there is an
overlapping between a current interaction of f1 and the first
interaction of f2.

The definition of the choice, select, is the same as in
the model semantics (select =

⋃
). Generalized union is

executable by the definition
⋃

SS = {S : P A; x : A | S ∈
SS; x ∈ S • x} as provided by the standard Z toolkit.

We finally define satisfaction: (d, σ) ∈F f “parses” a di-
alogue and initial state by trying the branches of a fragment
tree:

[α, π, Σ]

∈F : P((Dialogue[α, π] × Σ) × Fragment[α, π, Σ])

(∈F) =
{σ : Σ; f : Fragment[α, π, Σ] | eod ∈ f

• (〈〉, σ) 7→ f}∪
{i : Interaction[α, π]; d : Dialogue[α, π]; σ, σ′ : Σ

f , f ′ : Fragment[α, π, Σ]; r : Σ ↔ Σ

| br(i, r, f ′) ∈ f ; (σ, σ′) ∈ r; (d, σ′) ∈F f ′

• (〈i〉 a d, σ) 7→ f}

Example: Testing The Cash Dispenser. We can now
test satisfaction of given dialogues regarding the cash dis-
penser’s Use Cases (Spec. 1). Let some test dialogues be
defined as follows:
section CashDispenser

 markuslepper.eu

 IS
BN 0

-7
69

5-
08

22
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-0822-7

d1 == 〈dispenser :: askCard, user :: putCard,

dispenser :: askAmount, user :: putAmount(400),

dispenser :: ejectCard, user :: takeCard,

dispenser :: ejectMoney(400), user :: takeMoney〉

d2 == 〈dispenser :: askCard, user :: putCard,

dispenser :: ejectCard, user :: takeCard〉
σ1 == 〈| reserves == 600 |〉; σ2 == 〈| reserves == 800 |〉

Here are some query results:

(d1, σ1) ∈F System V *true*

(d1
a d2, σ1) ∈F System V *true*

(d1
a d2

a d1, σ1) ∈F System V *false*

(d1
a d2

a d1, σ2) ∈F System V *true*

In the third case, the reserves are too low to serve two sub-
sequent requests of the amount of 400 units. In the fourth
case, the reserves are raised, such that the requests can be
satisfied.

The efficiency of the execution of such queries scales to
larger test-data input. Dialogues of length 1000 are pro-
cessed in approximately 10 seconds on a Pentium-II/400 for
the cash dispenser example. In general, efficiency depends
on the kind of specification, and the amount of backtracking
required to recognize a dialogue.

Thus the execution of the dispenser’s Use Cases causes
no problems. In general, given an input dialogue and initial
system state, we can expect to execute a large subset of Use
Case definitions in the presented style. Restrictions are the
followings:

• For the state transition relations r, we must be able to
enumerate solutions to (σ, σ′) ∈ r. r may be a true
relation, and the solutions can be enumerated symbol-
ically. However, if the enumeration happens to be infi-
nite, our method is not complete, and since our imple-
mentation of Z uses depth-first search, not even semi-
complete.

• The use of select{x : A • f} in order to introduce
local variables has some restrictions. We cannot write
fragments of the kind

select{x? : Z • A � get(x? − 1) y B � put(x? + 1)}

The reason is that our implementation of executable Z
currently does not provide arithmetic constraints, and
a term like get(x? − 1) cannot be constructed until the
variable x? is bound (technically, the according con-
current constraint “residuates”). However, we may
write

select{x?, x! : Z | x? + 1 = x! − 1
•A �get(x?) y B � put(x!)}

The resolution of the constraint in the choice is de-
ferred until all necessary information is available, that
is, x? and x! are bound.

4. Concurrency And Its Application
The model given in the previous sections is adequate

for the loose description of systems like the cash dispenser
where two or more actors communicate in a fixed order. It
touches its limits, however, if the dialogues we want to de-
scribe consist of an interleaving of interactions of different
threads.

As an example, consider the problem of describing an
elevator system. In such a system, we have n users which
interact with one elevator. When a user calls the elevator,
until this request is served, other users may be served which
are “on the way” of the elevator from its current floor to the
first user’s floor. Though we may model such a behavior by
an according system state, this would not be in the spirit of
Use Cases. Instead, we want to be able to use descriptive
fragments of the kind user n � call y elevator � open door
– which describes the service offered to some user n, inde-
pendent of services which might be provided at the same
time (resp. interleaved with this service). This motivates
the development of a simple model of concurrency, which
is applied to the problem of an elevator system in this sec-
tion.

A Simple Model Of Concurrency. To model concur-
rency, we conservatively extend our current encoding by a
new operator for parallel composition. The definition uses
the same “trick” as before, pushing the composition lazily
through tree construction:

function 45(‖)

[α, π, Σ]

‖ : Fragment[α, π, Σ] × Fragment[α, π, Σ]→

Fragment[α, π, Σ]

(‖) = λ f1, f2 : Fragment[α, π, Σ] •
(if eod ∈ f1then f2

else if eod ∈ f2 then f1 else ∅)∪

{i : Interaction[α, π]; r1, r2 : Σ ↔ Σ

f ′1, f ′2 : Fragment[α, π, Σ]

| br(i, r1, f ′
1
) ∈ f1; br(i, r2, f ′

2
) ∈ f2

• br(i, r1 ∩ r2, f ′
1
‖ f ′

2
)}∪

{i : Interaction[α, π]; r1 : Σ ↔ Σ

f ′
1

: Fragment[α, π, Σ]

| br(i, r1, f ′1) ∈ f1 • br(i, r1, f ′1 ‖ f2)}∪
{i : Interaction[α, π]; r2 : Σ ↔ Σ

f ′2 : Fragment[α, π, Σ]

| br(i, r2, f ′
2
) ∈ f2 • br(i, r2, f1 ‖ f ′

2
)}

 markuslepper.eu

 IS
BN 0

-7
69

5-
08

22
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-0822-7

Our parallel composition allows the synchronous as well as
the interleaved combination of fragments. In the definition,
this is realized by the four cases:

• eod is in one of the fragments fi; then it is continued
with the other fragment (interleaved composition)

• both fragments synchronously step on the same inter-
action i; the state transitions are joined as r1 ∩ r2, and
thus must be compatible (this is in difference to ap-
proaches which use racing to handle conflicts in syn-
chronous transitions, e.g [2]).

• one of the fragments proceeds (interleaved composi-
tion)

Example: Elevator System. As an example applying the
concurrency model, we define Use Cases for a (simplified)
elevator system. The basic domains used are defined in
Spec. 2. We represent location and time by natural num-
bers. The constant MINOPENTIME specifies the minimal
time an elevator’s door should be kept open. A floor is de-
fined as an abstraction over the number of the floor. The
function floorLoc associates a location with each floor. A
direction can be either up or down.

Specification 2 Basic Domains

section Elevator parents UseCases

LOCATION == N

TIME == N

MINOPENTIME == 20
MAXFLOOR == 4
FLOOR ::= floor〈〈1 . . MAXFLOOR〉〉
floorLoc == λ f : FLOOR • (floor∼)f ∗ 3
DIR ::= up | down

Spec. 3 introduces the system state, State, and operations
on it. The state is given by a time stamp, a location of the
cabin and a queue of requests, containing floors in the or-
der the cabin shall approach. We suppose this state to be
visible to users of an elevator (for example, the location of
the cabin can be visualized by lamps); hence the principle
of observability is not violated.

The function queueRequest(l, reqs, f , d) queues a re-
quest in the right order, given the situation that the eleva-
tor is at l and is requested to serve f in the direction d. We
suppose this function inserts f into the queue of requests in
a “fair” way, serving requests “on the way” to head reqs if
possible. The definition is left open in this presentation.

The operation RemoveRequest removes the next request;
its precondition demands that there is actually a request, and
that the cabin is at the floor of this request. The operation

Specification 3 System State and Transitions

State
time : TIME; location : LOCATION
requests : seq FLOOR

↑== λ Op : P(∆State) • {Op • (θState, θState′)}

queueRequest : LOCATION × seq FLOOR×

FLOOR × DIR → seq FLOOR

AddRequest

∆State; Ξ(State \ (requests))
floor? : FLOOR; dir? : DIR

requests′ = queueRequest(location, requests, floor?, dir?)

RemoveRequest

∆State; Ξ(State \ (requests))

requests 6= 〈〉; location = floorLoc(head requests)
requests′ = tail requests

Move
∆State; Ξ(State \ (location)); target? : LOCATION

requests 6= 〈〉
∃ goal == floorLoc(head requests) •

target? 6= goal ⇒

abs(target? − goal) < abs(location − goal) ∧

(target? > location ⇒ goal /∈ location . . target?) ∧

(target? < location ⇒ goal /∈ target? . . location)

location′ = target?

Tick
∆State; Ξ(State \ (time))
duration? : TIME

time′ = time + duration?

Move checks wether a change of the location of the cabin to
target? confirms to the current request queue: if the request
queue is empty, no change is allowed; if it is non empty, the
cabin shall approach the first floor in sequence, and it shall
not outrun a floor which is requested. Finally, the operation
Tick describes a change of the time stamp.

Specification 4 Actors and Actions of the Elevator

ACTOR ::= user〈〈N〉〉 | cabin | clock
ACTION ::= tick〈〈TIME〉〉

| call〈〈FLOOR × DIR〉〉
| select〈〈FLOOR〉〉
| moved〈〈LOCATION〉〉
| opened | closed

 markuslepper.eu

 IS
BN 0

-7
69

5-
08

22
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-0822-7

Specification 5 User’s View

UserCalls, UserSelects, ElevatorServes, User :
N → Fragment[ACTOR, ACTION, State]

UserCalls = λ n : N •
select{floor? : FLOOR; dir? : DIR; t : TIME

• user n � call(floor?, dir?) /
↑ [∆State | AddRequest]

y cabin �opened /
↑ [∆State | RemoveRequest; t = time]

y cabin � closed /
↑ [ΞState | time − t ≥ MINOPENTIME]}

UserSelects = λ n : N •
select{floor? : FLOOR; dir? : DIR; t : TIME

• user n � select floor? /
↑ [∆State |

dir? = if floorLoc floor? < location
then down else up

AddRequest]
y cabin �opened /

↑ [∆State | RemoveRequest; t = time]
y cabin � closed /

↑ [ΞState | time − t ≥ MINOPENTIME]}

User = λ n : N •
repeat(select{UserCalls n, UserSelects n})

Specification 6 Cabin’s View

Cabin : Fragment[ACTOR, ACTION, State]

Cabin =
repeat(select{target? : LOCATION

• cabin �moved target? / ↑ [∆State | Move]})

Specification 7 Clock’s View

Clock : Fragment[ACTOR, ACTION, State]

Clock =
repeat(select{duration? : TIME

• clock � tick duration? / ↑ [∆State | Tick]})

Spec. 4 defines the actors and the actions of the elevator
system. We have n users, the cabin, and the clock. The
clock performs the tick action, the cabin moves to a location
and opens or closes the door, and user n calls the cabin at
a given floor for a certain direction, or selects a floor from
inside the cabin.

The user view on the elevator system is defined by the
fragments in Spec. 5. Each fragment is parameterized over

the number n of a user; in the sequel we will instantiate
these views in a parallel composition User 1 ‖ User 2 ‖
A user repeatedly calls from a floor or selects a floor, and
is then served by the elevator, which stops at the floor and
keeps its door open for at least MINOPENTIME.

The cabin view is given in Spec. 6. It just describes how
the cabin moves from target to target, using Move at each
step to test if the move is valid and to update the location.
Note that the interactions cabin �opened and cabin �closed
belong to the user view, and not to the cabin view. The clock
view, Spec. 7, finally defines how the clock repeatedly ticks,
updating the time stamp in the system state.

Our overall model is given by a parallel composition

User 1 ‖ . . . ‖ User n ‖ Cabin ‖ Clock

where the interactions described by the individual frag-
ments may appear in arbitrary interleaving or syn-
chronously, provided there exists a valid system state trans-
formation which fulfills this combination. Each of the frag-
ments in the composition can be thought of an individual
thread; communication between these threads is realized
via the system state or by synchronous interactions. We
support only a static number of such threads, and thus must
know in advance how many users appear in a given dialogue
before we can test for conformance of this dialogue to the
use case specification.

We make some evaluation experiments. Let the follow-
ing test data be given:

σ == (µ[State | time = 0; location = 0; requests = 〈〉])
d1 == λ duration : TIME •

〈clock :: tick 10, user 1 :: call(floor 2, up),

cabin ::moved(floorLoc(floor 2)),

cabin ::opened, clock :: tick duration, cabin ::closed〉

Test evaluation yields in:

(d1 60, σ) ∈F User 1 ‖ Cabin ‖ Clock V *true*
(d1 10, σ) ∈F User 1 ‖ Cabin ‖ Clock V *false*

In the second case, the time the door was kept open is to
small.

The next set of test data describes the situation where a
user which calls the cabin at a floor which is on the cabin’s
way is served in correct order (d2) and in invalid order (d3):

d2 == 〈user 1 :: call(floor 3, up), user 2 :: call(floor 2, up),

cabin :: moved(floorLoc(floor2)),

cabin :: opened, clock :: tick 40, cabin ::closed,

cabin :: moved(floorLoc(floor3)),

cabin :: opened, clock :: tick 40, cabin ::closed〉

 markuslepper.eu

 IS
BN 0

-7
69

5-
08

22
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-0822-7

d3 == 〈user 1 :: call(floor 3, up), user 2 :: call(floor 2, up),

cabin ::moved(floorLoc(floor 3)),

cabin ::opened, clock :: tick 40, cabin :: closed,

cabin ::moved(floorLoc(floor 2)),

cabin ::opened, clock :: tick 40, cabin :: closed〉

As to be expected, we get

(d2, σ) ∈F User 1 ‖ User 2 ‖ Cabin ‖ Clock V *true*
(d3, σ) ∈F User 1 ‖ User 2 ‖ Cabin ‖ Clock V *false*

In the examples above, we had no synchronous interac-
tions (where two parallel fragments consume the same in-
teraction of a dialogue). The following test data describes
a situation where two users are served at the same floor. In
this case, the cabin �opened . . . dialogue needs to be shared
by these users:

d4 == 〈user 1 :: select(floor 3), user 2 :: call(floor 3, up),

cabin ::moved(floorLoc(floor 3)),

cabin ::opened, clock :: tick 40, cabin :: closed〉

(d4, σ) ∈F User 1 ‖ User 2 ‖ Cabin ‖ Clock V *true*

5. Related Work and Conclusion

We have presented a setting which allows for the integra-
tion of Use Cases and Z in requirement specifications. The
benefits of both approaches seem to be preserved, compen-
sating the flaws of each other. For Use Cases, we do not
find an exact semantics in the literature, which makes their
instrumentation by tool support hard, and no standard way
for describing system states, which is often required in real-
world applications. Both are taken from Z in our integrated
setting. The Z methodology for sequential systems, on the
other hand, misses a way how to combine state transitions
in specifications, and how to define I/O behavior. This is
taken over from Use Cases to the world of Z.

In [3] a specification of Use Cases in Z has been given.
The focus is on understanding Use Cases, not on instru-
menting them for specification in combination with Z, as
has been done in this paper.

The possibility to execute our integrated Use Case and
Z specifications for the purpose of test evaluation shows
the power of the implementation of executable Z [6]. This
power is mainly achieved by the combination of higher-
orderness (which supports suitable abstractions) with con-
current constraint resolution, which allows to suspend goals
as long as enough information is available to resolve them.
The computational setting is comparable to that of logic
functional languages [7], but achieves its unique flavor by
its set-orientation.

Our executable encoding of fragments by infinite trees,

which are incrementally unrolled, is not only suited for Use
Cases, but can be used to encode other kinds of positive
trace logics. For example, we have applied a similar model
to an encoding of the positive subset of discrete temporal
interval logics. A disadvantage is, however, that the current
implementation of Executable Z does not always preserve
sharing and does not perform memorization. Future work
on Executable Z thus aims at supporting these features. As-
suming they would be present, the encoding by infinite trees
is probably as efficient as the much harder to maintain rep-
resentation by automatons.

The introduction of concurrency into Use Cases by a
combination of interleaving and synchronicity is a promis-
ing approach to strengthen the power of this kind of specifi-
cations. However, further validation is required whether this
approach scales up to larger examples, both from a method-
ological point of view as from the point of feasibility for
execution. Regarding the last aspect, the complexity seems
to be manageable as long as no deep backtracking becomes
necessary; that is, the “right” interleaving is decided early
in a branch.

On the meta-level of software engineering the experi-
ment of joining an informal and a formal specification tech-
nique grants benefits to both sides. We experienced that no-
tions and rules from the informal world are lifted to a new
level of higher exactness as soon as a mathematical pendant
is being constructed. On the other side the informal context
requires a certain amount of flexibility and looseness, for
which the formal techniques have to modify their expres-
sivness accordingly and which can serve as a measure for
feasibilty in future practice.

References

[1] E. V. Berard. Be careful with ”use cases”. Technical re-
port, The Object Agency, Inc., 1998. http://www.toa.
com/pub/use_cases.htm.

[2] R. Büssow and W. Grieskamp. A Modular Framework for
the Integration of Heterogenous Notations and Tools. In
K. Araki, A. Galloway, and K. Taguchi, editors, Proc. of
the 1st Intl. Conference on Integrated Formal Methods –
IFM’99. Springer-Verlag, London, June 1999.

[3] G. Butler, P. Grogono, and F. Khende. A Z specification
of use cases. In Proc. of the Asia-Pacific Software Engineer-
ing Conference and International Computer Science Confer-
ence, pages 505–506. IEEE Computer Society Press, 1997.

[4] D. Coleman. A use case template: draft for discussion, 1998.
Hewlett-Packard Software Initiative.

[5] W. Grieskamp. A Set-Based Calculus and its Implementa-
tion. PhD thesis, Technische Universität Berlin, 1999.

[6] W. Grieskamp. A Computation Model for Z based on Con-
current Constraint Resolution. To appear in ZB2000 – Inter-
national Conference of Z and B Users, September 2000.

[7] M. Hanus. The integration of functions into logic program-
ming: From theory to practice. Journal of Logic Program-
ming, 19(20), 1994.

 markuslepper.eu

 IS
BN 0

-7
69

5-
08

22
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-0822-7

[8] J. M. Spivey. The Z Notation: A Reference Manual. Prentice
Hall International Series in Computer Science, 2nd edition,
1992.

[9] Uml semantics version 1.3. http://www.rational.
com/uml/index.jtmpl.

[10] Drafts for the Z ISO standard. Ian Toyn (editor). URL:
http://www.cs.york.ac.uk/˜ian/zstan, 1999.

 markuslepper.eu

 IS
BN 0

-7
69

5-
08

22
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-0822-7

