
Automized Generation of Abstract Syntax Trees Represented as

Typed DOM XML
Extended Abstract

Baltasar Trancón y Widemann, Markus Lepper, Jacob Wieland

{bt,lepper,ugh}@cs.tu-berlin.de

Institute of Computer Science
Technische Universität Berlin

Abstract. The XANTLR/TDOM project is an implementation of a “typed” XML[1] Document Object
Model initially used to represent abstract syntax trees in a compiler project. Class files, SAX event re-
ceivers, visitor classes and DTD are automatically derived from a sparsely annotated ANTLR grammar.
Mapping tag values onto the type system of the target language yields large increases in performance,
automized generation is a must for safety and maintainability. The currently supported target language
is JAVA.

Keywords: XML, SAX, DOM, ANTLR, AST, compiler construction, meta-compiling

1 Introduction

Modern development of language analyzing appli-
cations, e.g. document processing or compiler con-
struction, is often based on declarative approaches:
type inference, context checking etc. are most nat-
urally described as sets of rules. Modern program-
ming should deal with high-level objects, like sets,
maps, patterns, and predicates. In advanced lan-
guages these are supported as “first class res-
idents”, in traditional languages like C++ and
JAVA they can be implemented using libraries of
container classes and traversal (visitor or rewriter)
patterns.
To benefit from these advanced features of the un-
derlying programming language the structure of
any data model has to be reasonably related to the
type system of the language. It is a fact of practical
matter that many tools, though mature and well-
proven in doing their domain job, do not support a
strongly typed output model. Instead they use e.g.
homogenous trees, in which all nodes are of the

same type. So the structural properties are rather
described than implemented. Examples of this de-
sign are the abstract syntax trees of the popular
ANTLR[8] parser generator and the element trees
of the DOM[5] format of XML documents.
This comes from the fact that a mapping to the
target type system would mostly be application de-
pendant. Standard tools with typed output models
can often only be realized in a generic way, using
techniques of meta-programming.
But analysis of homogenous trees is rather tedious
and error-prone: Rule matching has to be explicitly
coded, at least with a test of the node type and
structure, and all the higher level features of the
underlying language, such as inheritance, gener-
icity, dynamic binding and overloading cannot be
used. So it should not surprise that mapping struc-
tural information to the type system of the target
language yields significant profit in maintainability,
safety and performance.

2 XML in a Compiler Pipeline

The XANTLR project arose from a given project
situation involving two teams in two different in-
stituions, technically connected by a CVS source
code repository. One team developed a parser, the
other team the back-end of the compiler, and we
chose XML as an interchange format.

XML is a convenient way of encoding grammar
information (abstract syntax trees, or ASTs) col-
lected by a parser. An AST can be represented as
a tree of XML elements (possibly containing literal

character data from the input), with the abstract
syntax rules specified in the corresponding docu-
ment type definition (DTD). However, efficient and
verifiable generation, transformation and analysis
of the XML tree require some support for embed-
ding the XML producer and consumer processes
into a given target language, and for exploiting the
target language’s type system for validation.

In this project setting the grammar and thus also
the DTD were fixed, so we could have imple-

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

mented the heterogenous tree representation by
hand. For a grammar of 500+ production rules,
however, this would have been a scary task. The
XANTLR/TDOM tool chain is an automatic, clean
and reusable solution to the problem.

Though our recent work concentrated on elimi-
nating the real ASCII-coded XML files from the
tool chain, XML became even more present on the
meta-level as a conceptual structure definition lan-
guage.

3 The XANTLR/TDOM Tool Chain

The tool chain is depicted in the following fig-
ure. It integrates LL(k)-parser generation, both
event-based (SAX) and data-based (DOM) AST
communication, validation and light-weight compi-
lable pattern matching, tree reduction and validity-
invariant rewriting:

(generated
 Parser)

TDOM

XANTLR

.java (.class)

.java

.xg

.DTD

.<language>

DTD−parser
(.class)

SAX Iface

.XML

Tr
an
sf
or
ma
ti
on
s

domain spec.
 Reduction

Lightweight
Language
Values

.XML

.XML

The XANTLR tool chain

3.1 Parsing to XML

Our tool chain starts with XANTLR, an exten-
sion to the powerful ANTLR parser generator.
The ANTLR-generated parsers produce generic
homogenous ASTs that can be serialized to plain
XML text. The output can then be processed by a
standard XML parser, such as the Xerces[9] Parser
to generate SAX events or to construct a DOM
tree.
With our extensions, XANTLR can be configured to
directly emit SAX events instead of constructing an
AST. Any SAX event handler can be connected to
the XANTLR-generated parser, thus having access
to the XML structure of the parsed input whithout

constructing intermediate data structures. A loca-
tor implementation is provided, so the point of ori-
gin of each syntax element can be tracked down to
the input. A persistent XML document can still be
obtained (whithout going through AST construc-
tion and serialization) by attaching a SAX serial-
izer.
In parallel to parser generation, a DTD equivalent
to the input grammar is produced, specifying the
parser output for XML consumers:

a: α ;

a: {start(a);} α {end(a);} ;

a options{xmlNodeType=pcdata;}: α ;

a: c=α {cdata(c);} ;

a options{xmlNodeName=b;}: α ;

a: {start(b);} α {end(b);} ;

XANTLR to ANTLR transformation (schematic)

XANTLR acts as a preprocessor to ANTLR that
recognizes special options specifying the desired
XML representation and inserts semantic actions
which emit the appropriate SAX events. The de-
fault is to represent each grammar nonterminal as
an element:

a: α ;

<!ELEMENT a α′>

a options{xmlNodeType=pcdata;}: α ;

<!ELEMENT a (#PCDATA)>

a options{xmlNodeType=entity;}: α ;

<!ENTITY % a ’α′’>

a options{xmlNodeName=b;}: α ;

<!ELEMENT b α′>
(α1 . . . αn)

(α′

1
, . . ., α′

n)

(α1 | . . . | αn)

(α′

1
| . . . | α′

n)

(α)*

(α)*

(α)+

(α)+

(α)? | (α |)

(α)?

XANTLR to DTD transformation (schematic)

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

3.2 Typing XML

A XML document type definition constitutes a
grammar that can be mapped to the type system
of a given programming language, such as JAVA,
allowing for an efficient implementation of the ele-
ment tree structure. Each element declaration be-
comes a type declaration in the target language.
Besides member fields describing the attributes
and content of an element, statically type-checked
transformation methods can be defined on each
element type, such as replacing a child node by
another of the same type, adding a type-conform
child node to a list, or changing the value of a non-
fixed attribute. These work directly on the target-
language-level representation, thus providing an ef-
ficient lightweight interface to the document struc-
ture, as opposed to the high genericity level and
overhead of XSL[2] processing, and eliminating the
need for revalidation by incrementally constructing
an a priori valid document.
Of course, every given DTD has to be compiled
into a specialized set of type declarations. Our im-
plementation of this phase, the typed DOM (or
TDOM) compiler, reads in a DTD, and produces
the following JAVA classes:
– A class encapsulating the input DTD provid-

ing runtime access to the document type defi-
nition. In the way JAVA reflection handles the
interface of the generated classes, the DTD
model specifies their semantics.

– An abstract base class for all elements declared
in the given DTD.

– A class for each element. Element classes sup-
port both validating construction from a DOM
tree and fast, valid-by-typecheck construction
from TDOM objects. Methods to get and set
attributes and content are provided, as well as
conversion back to DOM. Validation of con-
tents models in DOM trees and SAX streams
is provided by a small parser generator: for de-
terministic content models, an efficient LL(1)
parser is derived, whereas nondeterministic
content can still be handled by a fallback non-
deterministic validator automaton.

– A container class for each content choice or
sequence. A sequence class is just a typed con-
tainer record for its elements. A choice con-
tainer is an abstract base class with one sub-
class for each alternative, and some methods
for distinguishing between these alternatives.

– A class for each attribute. This class will have
a default constructor if the attribute is not re-
quired, providing the default value. Besides,
there is a value constructor, a method to get
and (if the attribute is not fixed) to set the
current value.

– A visitor class implementing generic tree
traversal for all nodes covered by the DTD.

Applications can subclass the visitor to imple-
ment selective actions upon encountering the
desired nodes or patterns in the tree.

<!ELEMENT a (α, β)>

class Element a extends Element { α′; β′ }

(α)?

α′; boolean has α();

(α)* | (α)+

α′[]; int count α();

(α1, . . ., αn)i

class Seq i { α′

1
; . . .; α′

n }

(. . ., α, . . .)

T(α) α; T(α) get α(); void set α(T(α));

(α1 | . . . | αn)i

class Choice i { α′

1
; . . .; α′

n }

(. . . | α | . . .)i

class Alt α extends Choice i { α′ }

DTD to TDOM transformation (schematic)

3.3 Reducing from XML

The next phase of our compiler pipeline is go-
ing to leave the world of XML: Reducing various
front-end structures to expressions of a slim ker-
nel calculus is a powerful technique in compiler
construction. Not the ASTs representing those dif-
ferent front-end phenomena are processed by the
further steps of the compiler, but the tuned and
reduced expressions of the kernel language. This
transformation step highly depends on the kind of
language: Not only “syntactic sugar” is removed,
but also rather different syntactic constructs are
mapped to the same term structures, subtrees are
flattened and stored in hash sets or sequences, dec-
larations are collected and topologically sorted etc.
This is performed by the reduction step at the bot-
tom of the tool chain figure: the nodes of the TDOM

are traversed using the automatically constructed
visitor classes, and expressions of the kernel lan-
guage are generated. Complex tree analysis is done
here at high efficiency: Almost all pattern match-
ing is handled by the JAVA type system, either
statically by overloading resolution or dynamically
by method dispatching. It is no surprise that per-
formance proves far superior to DOM-based ap-
proaches, where node tags are matched at String

level, children have to be counted etc. Of course the
visitor classes (coming for free with TDOM compi-
lation) can be used for any other processing of the
TDOM tree, such as searching, sorting, extracting.
The expressions of the kernel language still have to
he coded as JAVA classes manually because of the
very specific requirements imposed on the compi-
lation process by the object language semantics.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

4 Future and Related Work

We consider TDOM a replacement for the generic
XSL approach aimed at domain specific (i.e., DTD
specific) tasks calling for performance and tight
embedding into a programming language. Possible
interaction, especially with the selection language
XPath[3] is a promising field of research.
The type mapping does not yet extend to the low-
est level of access, e.g., XML attributes contain-
ing numeric values should be accessible as int or
double on language level, and (even more impor-
tant) attributes of ID flavor should be translated to
references to other TDOM nodes. However, a DTD
is not expressive enough to control low-level data
mapping. Therefore, we postponed our efforts here
and look forward to a mature version of the XML
Schema[4] type definition language.
There seem to be several implementations of
lightweight DOM variants. The two we have

encountered so far, namely DOM light[7] and
JDOM[6] provide native JAVA implementations
tuned for the most frequently used DOM features.
As far as we know, they do not address the is-
sues of validation, validity-preserving transforma-
tion and type-driven analysis that are dominant in
the TDOM approach.

A feature that has been prototypically imple-
mented in the current TDOM, but that still needs
some research, is the automatic generation of XML
compression codecs. When the DTD of a document
is known, all information that can be inferred from
the declarations is redundant in the document. For
example, the textual size of element tags (which
should be verbose and human-readable in XML
text, as opposed to the cryptic HTML nomencla-
ture) plays no role in auto-compressed XML.

5 Acknowledgements

The work presented herein contains the conse-
quences drawn from a common project with Ina

Schieferdecker, Theofanis Vassiliou-Gioles

and others from GMD Fokus, Berlin. Also thanks

to Wolfgang Grieskamp, now at microsoft re-

search, who initiated our TDOM activities. The in-
tense discussions with these collegues have always
been a source of inspiration.

References

1. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible Markup Language (XML)
1.0 (Second Edition). W3C Recommendation, http://www.w3.org/TR/2000/REC-xml.

2. James Clark. XSL Transformations (XSLT) Version 1.0. W3C Recommendation,
http://www.w3.org/TR/1999/REC-xslt.

3. James Clark and Steve DeRose. XML Path Language (XPath). W3C Recommendation,
http://www.w3.org/TR/xpath.

4. Schema Working Group. XML Schema. W3C Candidate Recommendation,
http://www.w3.org/XML/Schema.

5. Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol, Jonathan Robie, Mike Champion,
and Steve Byrne. Document Object Model (DOM) Level 2 Core Specification Version 1.0. W3C
Recommendation, http://www.w3.org/TR/2000/REC-DOM-Level-2-Core.

6. Jason Hunter and Brett McLaughlin. JDOM. JDOM Project, http://www.jdom.org.
7. Philippe Kaplan and Thierry Kormann. DOM light. A fast and “easy-to-use” DOM-like API. Koala

Project, INRIA, http://www-sop.inria.fr/koala/domlight.
8. Terence Parr. ANTLR Reference Manual. jGuru, http://www.antlr.org/doc.
9. Apache XML Project. Xerces Java Parser. Apache Software Foundation,

http://xml.apache.org/xerces-j.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

